Visible to the public Biblio

Filters: Keyword is personally identifiable information  [Clear All Filters]
2021-04-09
Bhattacharya, M. P., Zavarsky, P., Butakov, S..  2020.  Enhancing the Security and Privacy of Self-Sovereign Identities on Hyperledger Indy Blockchain. 2020 International Symposium on Networks, Computers and Communications (ISNCC). :1—7.
Self-sovereign identities provide user autonomy and immutability to individual identities and full control to their identity owners. The immutability and control are possible by implementing identities in a decentralized manner on blockchains that are specially designed for identity operations such as Hyperledger Indy. As with any type of identity, self-sovereign identities too deal with Personally Identifiable Information (PII) of the identity holders and comes with the usual risks of privacy and security. This study examined certain scenarios of personal data disclosure via credential exchanges between such identities and risks of man-in-the-middle attacks in the blockchain based identity system Hyperledger Indy. On the basis of the findings, the paper proposes the following enhancements: 1) A novel attribute sensitivity score model for self-sovereign identity agents to ascertain the sensitivity of attributes shared in credential exchanges 2) A method of mitigating man-in-the-middle attacks between peer self-sovereign identities and 3) A novel quantitative model for determining a credential issuer's reputation based on the number of issued credentials in a window period, which is then utilized to calculate an overall confidence level score for the issuer.
2021-03-29
Gupta, S., Buduru, A. B., Kumaraguru, P..  2020.  imdpGAN: Generating Private and Specific Data with Generative Adversarial Networks. 2020 Second IEEE International Conference on Trust, Privacy and Security in Intelligent Systems and Applications (TPS-ISA). :64–72.
Generative Adversarial Network (GAN) and its variants have shown promising results in generating synthetic data. However, the issues with GANs are: (i) the learning happens around the training samples and the model often ends up remembering them, consequently, compromising the privacy of individual samples - this becomes a major concern when GANs are applied to training data including personally identifiable information, (ii) the randomness in generated data - there is no control over the specificity of generated samples. To address these issues, we propose imdpGAN-an information maximizing differentially private Generative Adversarial Network. It is an end-to-end framework that simultaneously achieves privacy protection and learns latent representations. With experiments on MNIST dataset, we show that imdpGAN preserves the privacy of the individual data point, and learns latent codes to control the specificity of the generated samples. We perform binary classification on digit pairs to show the utility versus privacy trade-off. The classification accuracy decreases as we increase privacy levels in the framework. We also experimentally show that the training process of imdpGAN is stable but experience a 10-fold time increase as compared with other GAN frameworks. Finally, we extend imdpGAN framework to CelebA dataset to show how the privacy and learned representations can be used to control the specificity of the output.
2021-01-11
Kuperberg, M..  2020.  Towards Enabling Deletion in Append-Only Blockchains to Support Data Growth Management and GDPR Compliance. 2020 IEEE International Conference on Blockchain (Blockchain). :393–400.
Conventional blockchain implementations with append-only semantics do not support deleting or overwriting data in confirmed blocks. However, many industry-relevant use cases require the ability to delete data, especially when personally identifiable information is stored or when data growth has to be constrained. Existing attempts to reconcile these contradictions compromise on core qualities of the blockchain paradigm, as they include backdoor-like approaches such as central authorities with elevated rights or usage of specialized chameleon hash algorithms in chaining of the blocks. The contribution of this paper is a novel architecture for the blockchain ledger and consensus, which uses a tree of context chains with simultaneous validity. A context chain captures the transactions of a closed group of entities and persons, thus structuring blocks in a precisely defined way. The resulting context isolation enables consensus-steered deletion of an entire context without side effects to other contexts. We show how this architecture supports truncation, data rollover and separation of concerns, how the GDPR regulations can be fulfilled by this architecture and how it differs from sidechains and state channels.
2020-07-13
Andrew, J., Karthikeyan, J., Jebastin, Jeffy.  2019.  Privacy Preserving Big Data Publication On Cloud Using Mondrian Anonymization Techniques and Deep Neural Networks. 2019 5th International Conference on Advanced Computing Communication Systems (ICACCS). :722–727.

In recent trends, privacy preservation is the most predominant factor, on big data analytics and cloud computing. Every organization collects personal data from the users actively or passively. Publishing this data for research and other analytics without removing Personally Identifiable Information (PII) will lead to the privacy breach. Existing anonymization techniques are failing to maintain the balance between data privacy and data utility. In order to provide a trade-off between the privacy of the users and data utility, a Mondrian based k-anonymity approach is proposed. To protect the privacy of high-dimensional data Deep Neural Network (DNN) based framework is proposed. The experimental result shows that the proposed approach mitigates the information loss of the data without compromising privacy.

2020-01-21
Rana, Rima, Zaeem, Razieh Nokhbeh, Barber, K. Suzanne.  2019.  An Assessment of Blockchain Identity Solutions: Minimizing Risk and Liability of Authentication. 2019 IEEE/WIC/ACM International Conference on Web Intelligence (WI). :26–33.
Personally Identifiable Information (PII) is often used to perform authentication and acts as a gateway to personal and organizational information. One weak link in the architecture of identity management services is sufficient to cause exposure and risk identity. Recently, we have witnessed a shift in identity management solutions with the growth of blockchain. Blockchain-the decentralized ledger system-provides a unique answer addressing security and privacy with its embedded immutability. In a blockchain-based identity solution, the user is given the control of his/her identity by storing personal information on his/her device and having the choice of identity verification document used later to create blockchain attestations. Yet, the blockchain technology alone is not enough to produce a better identity solution. The user cannot make informed decisions as to which identity verification document to choose if he/she is not presented with tangible guidelines. In the absence of scientifically created practical guidelines, these solutions and the choices they offer may become overwhelming and even defeat the purpose of providing a more secure identity solution.We analyze different PII options given to users for authentication on current blockchain-based solutions. Based on our Identity Ecosystem model, we evaluate these options and their risk and liability of exposure. Powered by real world data of about 6,000 identity theft and fraud stories, our model recommends some authentication choices and discourages others. Our work paves the way for a truly effective identity solution based on blockchain by helping users make informed decisions and motivating blockchain identity solution providers to introduce better options to their users.
Huang, Jiaju, Klee, Bryan, Schuckers, Daniel, Hou, Daqing, Schuckers, Stephanie.  2019.  Removing Personally Identifiable Information from Shared Dataset for Keystroke Authentication Research. 2019 IEEE 5th International Conference on Identity, Security, and Behavior Analysis (ISBA). :1–7.

Research on keystroke dynamics has the good potential to offer continuous authentication that complements conventional authentication methods in combating insider threats and identity theft before more harm can be done to the genuine users. Unfortunately, the large amount of data required by free-text keystroke authentication often contain personally identifiable information, or PII, and personally sensitive information, such as a user's first name and last name, username and password for an account, bank card numbers, and social security numbers. As a result, there are privacy risks associated with keystroke data that must be mitigated before they are shared with other researchers. We conduct a systematic study to remove PII's from a recent large keystroke dataset. We find substantial amounts of PII's from the dataset, including names, usernames and passwords, social security numbers, and bank card numbers, which, if leaked, may lead to various harms to the user, including personal embarrassment, blackmails, financial loss, and identity theft. We thoroughly evaluate the effectiveness of our detection program for each kind of PII. We demonstrate that our PII detection program can achieve near perfect recall at the expense of losing some useful information (lower precision). Finally, we demonstrate that the removal of PII's from the original dataset has only negligible impact on the detection error tradeoff of the free-text authentication algorithm by Gunetti and Picardi. We hope that this experience report will be useful in informing the design of privacy removal in future keystroke dynamics based user authentication systems.

2015-05-05
Bertino, E., Samanthula, B.K..  2014.  Security with privacy - A research agenda. Collaborative Computing: Networking, Applications and Worksharing (CollaborateCom), 2014 International Conference on. :144-153.

Data is one of the most valuable assets for organization. It can facilitate users or organizations to meet their diverse goals, ranging from scientific advances to business intelligence. Due to the tremendous growth of data, the notion of big data has certainly gained momentum in recent years. Cloud computing is a key technology for storing, managing and analyzing big data. However, such large, complex, and growing data, typically collected from various data sources, such as sensors and social media, can often contain personally identifiable information (PII) and thus the organizations collecting the big data may want to protect their outsourced data from the cloud. In this paper, we survey our research towards development of efficient and effective privacy-enhancing (PE) techniques for management and analysis of big data in cloud computing.We propose our initial approaches to address two important PE applications: (i) privacy-preserving data management and (ii) privacy-preserving data analysis under the cloud environment. Additionally, we point out research issues that still need to be addressed to develop comprehensive solutions to the problem of effective and efficient privacy-preserving use of data.