Biblio
Cyber-physical systems (CPS) depend on cybersecurity to ensure functionality, data quality, cyberattack resilience, etc. There are known and unknown cyber threats and attacks that pose significant risks. Information assurance and information security are critical. Many systems are vulnerable to intelligence exploitation and cyberattacks. By investigating cybersecurity risks and formal representation of CPS using spatiotemporal dynamic graphs and networks, this paper investigates topics and solutions aimed to examine and empower: (1) Cybersecurity capabilities; (2) Information assurance and system vulnerabilities; (3) Detection of cyber threat and attacks; (4) Situational awareness; etc. We introduce statistically-characterized dynamic graphs, novel entropy-centric algorithms and calculi which promise to ensure near-real-time capabilities.
The increased number of cyber attacks makes the availability of services a major security concern. One common type of cyber threat is distributed denial of service (DDoS). A DDoS attack is aimed at disrupting the legitimate users from accessing the services. It is easier for an insider having legitimate access to the system to deceive any security controls resulting in insider attack. This paper proposes an Early Detection and Isolation Policy (EDIP)to mitigate insider-assisted DDoS attacks. EDIP detects insider among all legitimate clients present in the system at proxy level and isolate it from innocent clients by migrating it to attack proxy. Further an effective algorithm for detection and isolation of insider is developed with the aim of maximizing attack isolation while minimizing disruption to benign clients. In addition, concept of load balancing is used to prevent proxies from getting overloaded.
Botnets are emerging as the most serious cyber threat among different forms of malware. Today botnets have been facilitating to launch many cybercriminal activities like DDoS, click fraud, phishing attacks etc. The main purpose of botnet is to perform massive financial threat. Many large organizations, banks and social networks became the target of bot masters. Botnets can also be leased to motivate the cybercriminal activities. Recently several researches and many efforts have been carried out to detect bot, C&C channels and bot masters. Ultimately bot maters also strengthen their activities through sophisticated techniques. Many botnet detection techniques are based on payload analysis. Most of these techniques are inefficient for encrypted C&C channels. In this paper we explore different categories of botnet and propose a detection methodology to classify bot host from the normal host by analyzing traffic flow characteristics based on time intervals instead of payload inspection. Due to that it is possible to detect botnet activity even encrypted C&C channels are used.
This paper presents a survey on cyber security issues in in current industrial automation and control systems, which also includes observations and insights collected and distilled through a series of discussion by some of major Japanese experts in this field. It also tries to provide a conceptual framework of those issues and big pictures of some ongoing projects to try to enhance it.