Biblio
In this paper, we quantify elements representing video features and we propose the bitrate prediction of compressed encoding video using deep learning. Particularly, to overcome disadvantage that we cannot predict bitrate of compression video by using Constant Rate Factor (CRF), we use deep learning. We can find element of video feature with relationship of bitrate when we compress the video, and we can confirm its possibility to find relationship through various deep learning techniques.
In this work we propose a novel deep learning approach for ultra-low bitrate video compression for video conferencing applications. To address the shortcomings of current video compression paradigms when the available bandwidth is extremely limited, we adopt a model-based approach that employs deep neural networks to encode motion information as keypoint displacement and reconstruct the video signal at the decoder side. The overall system is trained in an end-to-end fashion minimizing a reconstruction error on the encoder output. Objective and subjective quality evaluation experiments demonstrate that the proposed approach provides an average bitrate reduction for the same visual quality of more than 60% compared to HEVC.
ISSN: 2381-8549
The extremely rapid development of the Internet of Things brings growing attention to the information security issue. Realization of cryptographically strong pseudo random number generators (PRNGs), is crucial in securing sensitive data. They play an important role in cryptography and in network security applications. In this paper, we realize a comparative study of two pseudo chaotic number generators (PCNGs). The First pseudo chaotic number generator (PCNG1) is based on two nonlinear recursive filters of order one using a Skew Tent map (STmap) and a Piece-Wise Linear Chaotic map (PWLCmap) as non linear functions. The second pseudo chaotic number generator (PCNG2) consists of four coupled chaotic maps, namely: PWLCmaps, STmap, Logistic map by means a binary diffusion matrix [D]. A comparative analysis of the performance in terms of computation time (Generation time, Bit rate and Number of needed cycles to generate one byte) and security of the two PCNGs is carried out.
Traffic from mobile wireless networks has been growing at a fast pace in recent years and is expected to surpass wired traffic very soon. Service providers face significant challenges at such scales including providing seamless mobility, efficient data delivery, security, and provisioning capacity at the wireless edge. In the Mobility First project, we have been exploring clean slate enhancements to the network protocols that can inherently provide support for at-scale mobility and trustworthiness in the Internet. An extensible data plane using pluggable compute-layer services is a key component of this architecture. We believe these extensions can be used to implement in-network services to enhance mobile end-user experience by either off-loading work and/or traffic from mobile devices, or by enabling en-route service-adaptation through context-awareness (e.g., Knowing contemporary access bandwidth). In this work we present details of the architectural support for in-network services within Mobility First, and propose protocol and service-API extensions to flexibly address these pluggable services from end-points. As a demonstrative example, we implement an in network service that does rate adaptation when delivering video streams to mobile devices that experience variable connection quality. We present details of our deployment and evaluation of the non-IP protocols along with compute-layer extensions on the GENI test bed, where we used a set of programmable nodes across 7 distributed sites to configure a Mobility First network with hosts, routers, and in-network compute services.