Biblio
Modern industrial control systems (ICSes) are increasingly adopting Internet technology to boost control efficiency, which unfortunately opens up a new frontier for cyber-security. People have typically applied existing Internet security techniques, such as firewalls, or anti-virus or anti-spyware software. However, those security solutions can only provide fine-grained protection at single devices. To address this, we design a novel software-defined networking (SDN) architecture that offers the global visibility of a control network infrastructure, and we investigate innovative SDN-based applications with the focus of ICS security, such as network verification and self-healing phasor measurement unit (PMU) networks. We are also conducting rigorous evaluation using the IIT campus microgrid as well as a high-fidelity testbed combining network emulation and power system simulation.
Illinois Lablet Information Trust Institute, Joint Trust and Security/Science of Security Seminar, by Dong (Kevin) Jin, March 15, 2016.
Best Poster Award, Workshop on Science of Security through Software-Defined Networking, Chicago, IL, June 16-17, 2016.
The successful operations of modern power grids are highly dependent on a reliable and ecient underlying communication network. Researchers and utilities have started to explore the opportunities and challenges of applying the emerging software-de ned networking (SDN) technology to enhance eciency and resilience of the Smart Grid. This trend calls for a simulation-based platform that provides sufcient exibility and controllability for evaluating network application designs, and facilitating the transitions from inhouse research ideas to real productions. In this paper, we present DSSnet, a hybrid testing platform that combines a power distribution system simulator with an SDN emulator to support high delity analysis of communication network applications and their impacts on the power systems. Our contributions lay in the design of a virtual time system with the tight controllability on the execution of the emulation system, i.e., pausing and resuming any speci ed container processes in the perception of their own virtual clocks, with little overhead scaling to 500 emulated hosts with an average of 70 ms overhead; and also lay in the ecient synchronization of the two sub-systems based on the virtual time. We evaluate the system performance of DSSnet, and also demonstrate the usability through a case study by evaluating a load shifting algorithm.
Best Poster Award, Illinois Institute of Technology Research Day, April 11, 2016.
The emerging software-defined networking (SDN) technology decouples the control plane from the data plane in a computer network with open and standardized interfaces, and hence opens up the network designers’ options and ability to innovate. The wide adoption of SDN in industry has motivated the development of large-scale, high-fidelity testbeds for evaluation of systems that incorporate SDN. In this article, we develop a framework to support OpenFlow-based SDN simulation and distributed emulation, by leveraging our prior work on a hybrid network testbed with a parallel network simulator and a virtual-machine-based emulation system. We show how to exploit typical SDN controller behaviors to handle performance issues caused by the centralized controller in parallel discrete-event simulation. In particular, we develop an asynchronous synchronization algorithm for passive SDN controllers and design a two-level architecture for active SDN controllers. We evaluate the system performance, showing good scalability. Finally, we present a case study, using the testbed, to evaluate network verification applications in an SDN-based data center network. CCS Concepts: Networks→Network simulations; Computing methodologies→Simulation
Realistic and scalable testing systems are critical to evaluate network applications and protocols to ensure successful real system deployments. Container-based network emula- tion is attractive because of the combination of many desired features of network simulators and physical testbeds . The success of Mininet, a popular software- defined networking (SDN) emulation testbed, demonstrates the value of such approach that we can execute unmodified binary code on a large- scale emulated network with lightweight OS-level vir- tualization techniques. However, an ordinary network em- ulator uses the system clock across all the containers even if a container is not being scheduled to run. This leads to the issue of temporal fidelity, especially with high workloads. Virtual time sheds the light on the issue of preserving tem- poral fidelity for large-scale emulation. The key insight is to trade time with system resources via precisely scaling the time of interactions between containers and physical devices by a factor of n, hence, making an emulated network ap- pear to be n times faster from the viewpoints of applications in the container. In this paper, we develop a lightweight Linux-container-based virtual time system and integrate the system to Mininet for fidelity and scalability enhancement. We also design an adaptive time dilation scheduling mod- ule for balancing speed and accuracy. Experimental results demonstrate that (1) with virtual time, Mininet is able to accurately emulate a network n times larger in scale, where n is the scaling factor, with the system behaviors closely match data obtained from a physical testbed; and (2) with the adaptive time dilation scheduling, we reduce the running time by 46% with little accuracy loss. Finally, we present a case study using the virtual-time-enabled Mininet to evalu- ate the limitations of equal-cost multi-path (ECMP) routing in a data center network.
In the paper a programmable management framework for SDN networks is presented. The concept is in-line with SDN philosophy - it can be programmed from scratch. The implemented management functions can be case dependent. The concept introduces a new node in the SDN architecture, namely the SDN manager. In compliance with the latest trends in network management the approach allows for embedded management of all network nodes and gradual implementation of management functions providing their code lifecycle management as well as the ability to on-the-fly code update. The described concept is a bottom-up approach, which key element is distributed execution environment (PDEE) that is based on well-established technologies like OSGI and FIPA. The described management idea has strong impact on the evolution of the SDN architecture, because the proposed distributed execution environment is a generic one, therefore it can be used not only for the management, but also for distributing of control or application functions.
Software-Defined Networking (SDN) allows network capabilities and services to be managed through a central control point. Moving Target Defense (MTD) on the other hand, introduces a constantly adapting environment in order to delay or prevent attacks on a system. MTD is a use case where SDN can be leveraged in order to provide attack surface obfuscation. In this paper, we investigate how SDN can be used in some network-based MTD techniques. We first describe the advantages and disadvantages of these techniques, the potential countermeasures attackers could take to circumvent them, and the overhead of implementing MTD using SDN. Subsequently, we study the performance of the SDN-based MTD methods using Cisco's One Platform Kit and we show that they significantly increase the attacker's overheads.
Datacenter-based Cloud computing has induced new disruptive trends in networking, key among which is network virtualization. Software-Defined Networking overlays aim to improve the efficiency of the next generation multitenant datacenters. While early overlay prototypes are already available, they focus mainly on core functionality, with little being known yet about their impact on the system level performance. Using query completion time as our primary performance metric, we evaluate the overlay network impact on two representative datacenter workloads, Partition/Aggregate and 3-Tier. We measure how much performance is traded for overlay's benefits in manageability, security and policing. Finally, we aim to assist the datacenter architects by providing a detailed evaluation of the key overlay choices, all made possible by our accurate cross-layer hybrid/mesoscale simulation platform.
- « first
- ‹ previous
- 1
- 2
- 3
- 4