Biblio
In this paper, a dynamic cybersecurity protection method based on software-defined networking (SDN) is proposed, according to the protection requirement analysis for industrial control systems (ICSs). This method can execute security response measures by SDN, such as isolation, redirection etc., based on the real-time intrusion detection results, forming a detecting-responding closed-loop security control. In addition, moving target defense (MTD) concept is introduced to the protection for ICSs, where topology transformation and IP/port hopping are realized by SDN, which can confuse and deceive the attackers and prevent attacks at the beginning, protection ICSs in an active manner. The simulation results verify the feasibility of the proposed method.
Despite the wide of range of research and technologies that deal with the problem of routing in computer networks, there remains a gap between the level of network hardware administration and the level of business requirements and constraints. Not much has been accomplished in literature in order to have a direct enforcement of such requirements on the network. This paper presents a new solution in specifying and directly enforcing security policies to control the routing configuration in a software-defined network by using Row-Level Security checks which enable fine-grained security policies on individual rows in database tables. We show, as a first step, how a specific class of such policies, namely multilevel security policies, can be enforced on a database-defined network, which presents an abstraction of a network's configuration as a set of database tables. We show that such policies can be used to control the flow of data in the network either in an upward or downward manner.
Software Defined Networking (SDN) has introduced both innovative opportunities and additional risks in the computer networking. Among disadvantages of SDNs one can mention their susceptibility to vulnerabilities associated with both virtualization and the traditional networking. Selecting a proper controller for an organization may not be a trivial task as there is a variety of SDN controllers on the market and each of them may come with its own pros and cons from the security point of view. This research proposes a comprehensive methodology for organizations to evaluate security-related features available in SDN controllers. The methodology can serve as a guideline in the decisions related to SDN choice. The proposed security assessment follows a structured approach to evaluate each layer of the SDN architecture and each metrics defined in presented research has been matched with the security controls defined in NIST 800-53. Through the tests on actual controllers the paper provides an example on how the proposed methodology can be used to evaluate existing SDN solutions.
Large-scale failures in communication networks due to natural disasters or malicious attacks can severely affect critical communications and threaten lives of people in the affected area. In the absence of a proper communication infrastructure, rescue operation becomes extremely difficult. Progressive and timely network recovery is, therefore, a key to minimizing losses and facilitating rescue missions. To this end, we focus on network recovery assuming partial and uncertain knowledge of the failure locations. We proposed a progressive multi-stage recovery approach that uses the incomplete knowledge of failure to find a feasible recovery schedule. Next, we focused on failure recovery of multiple interconnected networks. In particular, we focused on the interaction between a power grid and a communication network. Then, we focused on network monitoring techniques that can be used for diagnosing the performance of individual links for localizing soft failures (e.g. highly congested links) in a communication network. We studied the optimal selection of the monitoring paths to balance identifiability and probing cost. Finally, we addressed, a minimum disruptive routing framework in software defined networks. Extensive experimental and simulation results show that our proposed recovery approaches have a lower disruption cost compared to the state-of-the-art while we can configure our choice of trade-off between the identifiability, execution time, the repair/probing cost, congestion and the demand loss.
The growing trend toward information technology increases the amount of data travelling over the network links. The problem of detecting anomalies in data streams has increased with the growth of internet connectivity. Software-Defined Networking (SDN) is a new concept of computer networking that can adapt and support these growing trends. However, the centralized nature of the SDN design is challenged by the need for an efficient method for traffic monitoring against traffic anomalies caused by misconfigured devices or ongoing attacks. In this paper, we propose a new model for traffic behavior monitoring that aims to ensure trusted communication links between the network devices. The main objective of this model is to confirm that the behavior of the traffic streams matches the instructions provided by the SDN controller, which can help to increase the trust between the SDN controller and its covered infrastructure components. According to our preliminary implementation, the behavior monitoring unit is able to read all traffic information and perform a validation process that reports any mismatching traffic to the controller.
Software-defined networking (SDN) allows the smart grid to be centrally controlled and managed by decoupling the control plane from the data plane, but it also expands attack surface for attackers. Existing studies about the security of SDN-enabled smart grid (SDSG) mainly focused on static methods such as access control and identity authentication, which is vulnerable to attackers that carefully probe the system. As the attacks become more variable and complex, there is an urgent need for dynamic defense methods. In this paper, we propose a security function virtualization (SFV) based moving target defense of SDSG which makes the attack surface constantly changing. First, we design a dynamic defense mechanism by migrating virtual security function (VSF) instances as the traffic state changes. The centralized SDN controller is re-designed for global status monitoring and migration management. Moreover, we formalize the VSF instances migration problem as an integer nonlinear programming problem with multiple constraints and design a pre-migration algorithm to prevent VSF instances' resources from being exhausted. Simulation results indicate the feasibility of the proposed scheme.
Distributed Denial of Service attack is very harmful to software-defined networking. Effective defense measures are the key to ensure SDN security. An adaptive moving target defense scheme based on end information hopping for SDN is proposed. The source address entropy value and the flow rate method are used to detect the network condition. According to the detection result, the end information is adjusted by time adaptive or space adaptive. A model of active network defense is constructed. The experimental results show that the proposed scheme enhances the anti-attack capability and serviceability compared with other methods, and has greater dynamics and flexibility.
Network virtualization is a fundamental technology for datacenters and upcoming wireless communications (e.g., 5G). It takes advantage of software-defined networking (SDN) that provides efficient network management by converting networking fabrics into SDN-capable devices. Moreover, white-box switches, which provide flexible and fast packet processing, are broadly deployed in commercial datacenters. A white-box switch requires a specific and restricted packet processing pipeline; however, to date, there has been no SDN-based network hypervisor that can support the pipeline of white-box switches. Therefore, in this paper, we propose WhiteVisor: a network hypervisor which can support the physical network composed of white-box switches. WhiteVisor converts a flow rule from the virtual network into a packet processing pipeline compatible with the white-box switch. We implement the prototype herein and show its feasibility and effectiveness with pipeline conversion and overhead.
Conventional SDN-based MTD techniques have been mainly developed with a single SDN controller which exposes a single point of failure as well as raises a scalability issue for large-scale networks in achieving both security and performance. The use of multiple SDN controllers has been proposed to ensure both performance and security of SDN-based MTD systems for large-scale networks; however, the effect of using multiple SDN controllers has not been investigated in the state-of-the-art research. In this paper, we propose the SDN based MTD architecture using multiple SDN controllers and validate their security effect (i.e., attack success probability) by implementing an IP shuffling MTD in a testbed using ONOS SDN controllers.
In Software-Defined Networks (SDN), so called SDN controllers are responsible for managing the network devices building such a network. Once such a core component of the network has been infected with malicious software (e.g., by a malicious SDN application), an attacker typically has a strong interest in remaining undetected while compromising other devices in the network. Thus, hiding a malicious network state and corresponding network manipulations are important objectives for an adversary. To achieve this, rootkit techniques can be applied in order to manipulate the SDN controller's view of a network. As a consequence, monitoring capabilities of SDN controllers as well as SDN applications with a security focus can be fooled by hiding adverse network manipulations. To tackle this problem, we propose a novel approach capable of detecting and preventing hidden network manipulations before they can attack a network. In particular, our method is able to drop adverse network manipulations before they are applied on a network. We achieve this by comparing the actual network state, which includes both malicious and benign configurations, with the network state which is provided by a potentially compromised SDN controller. In case of an attack, the result of this comparison reveals network manipulations which are adversely removed from an SDN controller's view of a network. To demonstrate the capabilities of this approach, we implement a prototype and evaluate effectiveness as well as efficiency. The evaluation results indicate scalability and high performance of our system, while being able to protect major SDN controller platforms.
Services provided online are subject to various types of attacks. Security appliances can be chained to protect a system against multiple types of network attacks. The sequence of appliances has a significant impact on the efficiency of the whole chain. While the operation of security appliance chains is currently based on a static order, traffic-aware reordering of security appliances may significantly improve efficiency and accuracy. In this paper, we present the vision of a self-aware system to automatically reorder security appliances according to incoming traffic. To achieve this, we propose to apply a model-based learning, reasoning, and acting (LRA-M) loop. To this end, we describe a corresponding system architecture and explain its building blocks.
This paper presents a review on how to benefit from software-defined networking (SDN) to enhance smart grid security. For this purpose, the attacks threatening traditional smart grid systems are classified according to availability, integrity, and confidentiality, which are the main cyber-security objectives. The traditional smart grid architecture is redefined with SDN and a conceptual model for SDN-based smart grid systems is proposed. SDN based solutions to the mentioned security threats are also classified and evaluated. Our conclusions suggest that SDN helps to improve smart grid security by providing real-time monitoring, programmability, wide-area security management, fast recovery from failures, distributed security and smart decision making based on big data analytics.
The software defined networking framework facilitates flexible and reliable internet of things networks by moving the network intelligence to a centralized location while enabling low power wireless network in the edge. In this paper, we present SD-WSN6Lo, a novel software-defined wireless management solution for 6LoWPAN networks that aims to reduce the management complexity in WSN's. As an example of the technique, a simulation of controlling the power consumption of sensor nodes is presented. The results demonstrate improved energy consumption of approximately 15% on average per node compared to the baseline condition.