Visible to the public Biblio

Filters: Keyword is software-defined networking  [Clear All Filters]
2022-12-06
Han, May Pyone, Htet, Soe Ye, Wuttisttikulkij, Lunchakorn.  2022.  Hybrid GNS3 and Mininet-WiFi Emulator for SDN Backbone Network Supporting Wireless IoT Traffic. 2022 37th International Technical Conference on Circuits/Systems, Computers and Communications (ITC-CSCC). :768-771.

In the IoT (Internet of Things) domain, it is still a challenge to modify the routing behavior of IoT traffic at the decentralized backbone network. In this paper, centralized and flexible software-defined networking (SDN) is utilized to route the IoT traffic. The management of IoT data transmission through the SDN core network gives the chance to choose the path with the lowest delay, minimum packet loss, or hops. Therefore, fault-tolerant delay awareness routing is proposed for the emulated SDN-based backbone network to handle delay-sensitive IoT traffic. Besides, the hybrid form of GNS3 and Mininet-WiFi emulation is introduced to collaborate the SDN-based backbone network in GNS3 and the 6LoWPAN (IPv6 over Low Power Personal Area Network) sensor network in Mininet-WiFi.

2022-04-01
Dinh, Phuc Trinh, Park, Minho.  2021.  BDF-SDN: A Big Data Framework for DDoS Attack Detection in Large-Scale SDN-Based Cloud. 2021 IEEE Conference on Dependable and Secure Computing (DSC). :1–8.
Software-defined networking (SDN) nowadays is extensively being used in a variety of practical settings, provides a new way to manage networks by separating the data plane from its control plane. However, SDN is particularly vulnerable to Distributed Denial of Service (DDoS) attacks because of its centralized control logic. Many studies have been proposed to tackle DDoS attacks in an SDN design using machine-learning-based schemes; however, these feature-based detection schemes are highly resource-intensive and they are unable to perform reliably in such a large-scale SDN network where a massive amount of traffic data is generated from both control and data planes. This can deplete computing resources, degrade network performance, or even shut down the network systems owing to being exhausting resources. To address the above challenges, this paper proposes a big data framework to overcome traditional data processing limitations and to exploit distributed resources effectively for the most compute-intensive tasks such as DDoS attack detection using machine learning techniques, etc. We demonstrate the robustness, scalability, and effectiveness of our framework through practical experiments.
2022-03-15
Cui, Jie, Kong, Lingbiao, Zhong, Hong, Sun, Xiuwen, Gu, Chengjie, Ma, Jianfeng.  2021.  Scalable QoS-Aware Multicast for SVC Streams in Software-Defined Networks. 2021 IEEE Symposium on Computers and Communications (ISCC). :1—7.
Because network nodes are transparent in media streaming applications, traditional networks cannot utilize the scalability feature of Scalable video coding (SVC). Compared with the traditional network, SDN supports various flows in a more fine-grained and scalable manner via the OpenFlow protocol, making QoS requirements easier and more feasible. In previous studies, a Ternary Content-Addressable Memory (TCAM) space in the switch has not been considered. This paper proposes a scalable QoS-aware multicast scheme for SVC streams, and formulates the scalable QoS-aware multicast routing problem as a nonlinear programming model. Then, we design heuristic algorithms that reduce the TCAM space consumption and construct the multicast tree for SVC layers according to video streaming requests. To alleviate video quality degradation, a dynamic layered multicast routing algorithm is proposed. Our experimental results demonstrate the performance of this method in terms of the packet loss ratio, scalability, the average satisfaction, and system utility.
2022-03-01
Thu Hien, Do Thi, Do Hoang, Hien, Pham, Van-Hau.  2021.  Empirical Study on Reconnaissance Attacks in SDN-Aware Network for Evaluating Cyber Deception. 2021 RIVF International Conference on Computing and Communication Technologies (RIVF). :1–6.
Thanks to advances in network architecture with Software-Defined Networking (SDN) paradigm, there are various approaches for eliminating attack surface in the largescale networks relied on the essence of the SDN principle. They are ranging from intrusion detection to moving target defense, and cyber deception that leverages the network programmability. Therein, cyber deception is considered as a proactive defense strategy for the usual network operation since it makes attackers spend more time and effort to successfully compromise network systems. In this paper, we concentrate on reconnaissance attacks in SDN-enabled networks to collect the sensitive information for hackers to conduct further attacks. In more details, we introduce SDNRecon tool to perform reconnaissance attacks, which can be useful in evaluating cyber deception techniques deployed in SDN-aware networks.
2021-11-29
Qu, Yanfeng, Chen, Gong, Liu, Xin, Yan, Jiaqi, Chen, Bo, Jin, Dong.  2020.  Cyber-Resilience Enhancement of PMU Networks Using Software-Defined Networking. 2020 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm). :1–7.
Phasor measurement unit (PMU) networks are increasingly deployed to offer timely and high-precision measurement of today's highly interconnected electric power systems. To enhance the cyber-resilience of PMU networks against malicious attacks and system errors, we develop an optimization-based network management scheme based on the software-defined networking (SDN) communication infrastructure to recovery PMU network connectivity and restore power system observability. The scheme enables fast network recovery by optimizing the path generation and installation process, and moreover, compressing the SDN rules to be installed on the switches. We develop a prototype system and perform system evaluation in terms of power system observability, recovery speed, and rule compression using the IEEE 30-bus system and IEEE 118-bus system.
2021-09-08
Ali, Jehad, Roh, Byeong-hee, Lee, Byungkyu, Oh, Jimyung, Adil, Muhammad.  2020.  A Machine Learning Framework for Prevention of Software-Defined Networking Controller from DDoS Attacks and Dimensionality Reduction of Big Data. 2020 International Conference on Information and Communication Technology Convergence (ICTC). :515–519.
The controller is an indispensable entity in software-defined networking (SDN), as it maintains a global view of the underlying network. However, if the controller fails to respond to the network due to a distributed denial of service (DDoS) attacks. Then, the attacker takes charge of the whole network via launching a spoof controller and can also modify the flow tables. Hence, faster, and accurate detection of DDoS attacks against the controller will make the SDN reliable and secure. Moreover, the Internet traffic is drastically increasing due to unprecedented growth of connected devices. Consequently, the processing of large number of requests cause a performance bottleneck regarding SDN controller. In this paper, we propose a hierarchical control plane SDN architecture for multi-domain communication that uses a statistical method called principal component analysis (PCA) to reduce the dimensionality of the big data traffic and the support vector machine (SVM) classifier is employed to detect a DDoS attack. SVM has high accuracy and less false positive rate while the PCA filters attribute drastically. Consequently, the performance of classification and accuracy is improved while the false positive rate is reduced.
2021-08-02
Kim, Dong Seong, Kim, Minjune, Cho, Jin-Hee, Lim, Hyuk, Moore, Terrence J., Nelson, Frederica F..  2020.  Design and Performance Analysis of Software Defined Networking Based Web Services Adopting Moving Target Defense. 2020 50th Annual IEEE-IFIP International Conference on Dependable Systems and Networks-Supplemental Volume (DSN-S). :43—44.
Moving Target Defense (MTD) has been emerged as a promising countermeasure to defend systems against cyberattacks asymmetrically while working well with legacy security and defense mechanisms. MTD provides proactive security services by dynamically altering attack surfaces and increasing attack cost or complexity to prevent further escalation of the attack. However, one of the non-trivial hurdles in deploying MTD techniques is how to handle potential performance degradation (e.g., interruptions of service availability) and maintain acceptable quality-of-service (QoS) in an MTD-enabled system. In this paper, we derive the service performance metrics (e.g., an extent of failed jobs) to measure how much performance degradation is introduced due to MTD operations, and propose QoS-aware service strategies (i.e., drop and wait) to manage ongoing jobs with the minimum performance degradation even under MTD operations running. We evaluate the service performance of software-defined networking (SDN)-based web services (i.e., Apache web servers). Our experimental results prove that the MTD-enabled system can minimize performance degradation by using the proposed job management strategies. The proposed strategies aim to optimize a specific service configuration (e.g., types of jobs and request rates) and effectively minimize the adverse impact of deploying MTD in the system with acceptable QoS while retaining the security effect of IP shuffling-based MTD.
2021-06-30
Mershad, Khaleel, Said, Bilal.  2020.  A Blockchain Model for Secure Communications in Internet of Vehicles. 2020 IEEE/ACS 17th International Conference on Computer Systems and Applications (AICCSA). :1—6.
The wide expansion of the Internet of Things is pushing the growth of vehicular ad-hoc networks (VANETs) into the Internet of Vehicles (IoV). Secure data communication is vital to the success and stability of the IoV and should be integrated into its various operations and aspects. In this paper, we present a framework for secure IoV communications by utilizing the High Performance Blockchain Consensus (HPBC) algorithm. Based on a previously published communication model for VANETs that uses an efficient routing protocol for transmitting packets between vehicles, we describe in this paper how to integrate a blockchain model on top of the IoV communications system. We illustrate the method that we used to implement HPBC within the IoV nodes. In order to prove the efficiency of the proposed model, we carry out extensive simulations that test the proposed model and study its overhead on the IoV network. The simulation results demonstrated the good performance of the HPBC algorithm when implemented within the IoV environment.
2021-02-23
Alshamrani, A..  2020.  Reconnaissance Attack in SDN based Environments. 2020 27th International Conference on Telecommunications (ICT). :1—5.
Software Defined Networking (SDN) is a promising network architecture that aims at providing high flexibility through the separation between network logic (control plane) and forwarding functions (data plane). This separation provides logical centralization of controllers, global network overview, ease of programmability, and a range of new SDN-compliant services. In recent years, the adoption of SDN in enterprise networks has been constantly increasing. In the meantime, new challenges arise in different levels such as scalability, management, and security. In this paper, we elaborate on complex security issues in the current SDN architecture. Especially, reconnaissance attack where attackers generate traffic for the goal of exploring existing services, assets, and overall network topology. To eliminate reconnaissance attack in SDN environment, we propose SDN-based solution by utilizing distributed firewall application, security policy, and OpenFlow counters. Distributed firewall application is capable of tracking the flow based on pre-defined states that would monitor the connection to sensitive nodes toward malicious activity. We utilize Mininet to simulate the testing environment. We are able to detect and mitigate this type of attack at early stage and in average around 7 second.
2021-02-16
Lotfalizadeh, H., Kim, D. S..  2020.  Investigating Real-Time Entropy Features of DDoS Attack Based on Categorized Partial-Flows. 2020 14th International Conference on Ubiquitous Information Management and Communication (IMCOM). :1—6.
With the advent of IoT devices and exponential growth of nodes on the internet, computer networks are facing new challenges, with one of the more important ones being DDoS attacks. In this paper, new features to detect initiation and termination of DDoS attacks are investigated. The method to extract these features is devised with respect to some openflowbased switch capabilities. These features provide us with a higher resolution to view and process packet count entropies, thus improving DDoS attack detection capabilities. Although some of the technical assumptions are based on SDN technology and openflow protocol, the methodology can be applied in other networking paradigms as well.
Abdulkarem, H. S., Dawod, A..  2020.  DDoS Attack Detection and Mitigation at SDN Data Plane Layer. 2020 2nd Global Power, Energy and Communication Conference (GPECOM). :322—326.
In the coming future, Software-defined networking (SDN) will become a technology more responsive, fully automated, and highly secure. SDN is a way to manage networks by separate the control plane from the forwarding plane, by using software to manage network functions through a centralized control point. A distributed denial-of-service (DDoS) attack is the most popular malicious attempt to disrupt normal traffic of a targeted server, service, or network. The problem of the paper is the DDoS attack inside the SDN environment and how could use SDN specifications through the advantage of Open vSwitch programmability feature to stop the attack. This paper presents DDoS attack detection and mitigation in the SDN data-plane by applying a written SDN application in python language, based on the malicious traffic abnormal behavior to reduce the interference with normal traffic. The evaluation results reveal detection and mitigation time between 100 to 150 sec. The work also sheds light on the programming relevance with the open daylight controller over an abstracted view of the network infrastructure.
Mujib, M., Sari, R. F..  2020.  Performance Evaluation of Data Center Network with Network Micro-segmentation. 2020 12th International Conference on Information Technology and Electrical Engineering (ICITEE). :27—32.

Research on the design of data center infrastructure is increasing, both from academia and industry, due to the rapid development of cloud-based applications such as search engines, social networks, and large-scale computing. On a large scale, data centers can consist of hundreds to thousands of servers that require systems with high-performance requirements and low downtime. To meet the network's needs in a dynamic data center, infrastructure of applications and services are growing. It takes a process of designing a network topology so that it can guarantee availability and security. One way to surmount this is by implementing the zero trust security model based on micro-segmentation. Zero trust is a security idea based on the principle of "never trust, always verify" in which no concepts of trust and untrust in network traffic. The zero trust security model implemented network traffic in the form of untrust. Micro-segmentation is a way to achieve zero trust by dividing a network into smaller logical segments to restrict the traffic. In this research, data center network performance based on software-defined networking with zero trust security model using micro-segmentation has been evaluated using a testbed simulation of Cisco Application Centric Infrastructure by measuring the round trip time, jitter, and packet loss during experiments. Performance evaluation results show that micro-segmentation adds an average round trip time of 4 μs and jitter of 11 μs without packet loss so that the security can be improved without significantly affecting network performance on the data center.

2021-01-25
Yoon, S., Cho, J.-H., Kim, D. S., Moore, T. J., Free-Nelson, F., Lim, H..  2020.  Attack Graph-Based Moving Target Defense in Software-Defined Networks. IEEE Transactions on Network and Service Management. 17:1653–1668.
Moving target defense (MTD) has emerged as a proactive defense mechanism aiming to thwart a potential attacker. The key underlying idea of MTD is to increase uncertainty and confusion for attackers by changing the attack surface (i.e., system or network configurations) that can invalidate the intelligence collected by the attackers and interrupt attack execution; ultimately leading to attack failure. Recently, the significant advance of software-defined networking (SDN) technology has enabled several complex system operations to be highly flexible and robust; particularly in terms of programmability and controllability with the help of SDN controllers. Accordingly, many security operations have utilized this capability to be optimally deployed in a complex network using the SDN functionalities. In this paper, by leveraging the advanced SDN technology, we developed an attack graph-based MTD technique that shuffles a host's network configurations (e.g., MAC/IP/port addresses) based on its criticality, which is highly exploitable by attackers when the host is on the attack path(s). To this end, we developed a hierarchical attack graph model that provides a network's vulnerability and network topology, which can be utilized for the MTD shuffling decisions in selecting highly exploitable hosts in a given network, and determining the frequency of shuffling the hosts' network configurations. The MTD shuffling with a high priority on more exploitable, critical hosts contributes to providing adaptive, proactive, and affordable defense services aiming to minimize attack success probability with minimum MTD cost. We validated the out performance of the proposed MTD in attack success probability and MTD cost via both simulation and real SDN testbed experiments.
2021-01-22
Akbari, I., Tahoun, E., Salahuddin, M. A., Limam, N., Boutaba, R..  2020.  ATMoS: Autonomous Threat Mitigation in SDN using Reinforcement Learning. NOMS 2020 - 2020 IEEE/IFIP Network Operations and Management Symposium. :1—9.
Machine Learning has revolutionized many fields of computer science. Reinforcement Learning (RL), in particular, stands out as a solution to sequential decision making problems. With the growing complexity of computer networks in the face of new emerging technologies, such as the Internet of Things and the growing complexity of threat vectors, there is a dire need for autonomous network systems. RL is a viable solution for achieving this autonomy. Software-defined Networking (SDN) provides a global network view and programmability of network behaviour, which can be employed for security management. Previous works in RL-based threat mitigation have mostly focused on very specific problems, mostly non-sequential, with ad-hoc solutions. In this paper, we propose ATMoS, a general framework designed to facilitate the rapid design of RL applications for network security management using SDN. We evaluate our framework for implementing RL applications for threat mitigation, by showcasing the use of ATMoS with a Neural Fitted Q-learning agent to mitigate an Advanced Persistent Threat. We present the RL model's convergence results showing the feasibility of our solution for active threat mitigation.
2021-01-11
Malik, A., Fréin, R. de, Al-Zeyadi, M., Andreu-Perez, J..  2020.  Intelligent SDN Traffic Classification Using Deep Learning: Deep-SDN. 2020 2nd International Conference on Computer Communication and the Internet (ICCCI). :184–189.
Accurate traffic classification is fundamentally important for various network activities such as fine-grained network management and resource utilisation. Port-based approaches, deep packet inspection and machine learning are widely used techniques to classify and analyze network traffic flows. However, over the past several years, the growth of Internet traffic has been explosive due to the greatly increased number of Internet users. Therefore, both port-based and deep packet inspection approaches have become inefficient due to the exponential growth of the Internet applications that incurs high computational cost. The emerging paradigm of software-defined networking has reshaped the network architecture by detaching the control plane from the data plane to result in a centralised network controller that maintains a global view over the whole network on its domain. In this paper, we propose a new deep learning model for software-defined networks that can accurately identify a wide range of traffic applications in a short time, called Deep-SDN. The performance of the proposed model was compared against the state-of-the-art and better results were reported in terms of accuracy, precision, recall, and f-measure. It has been found that 96% as an overall accuracy can be achieved with the proposed model. Based on the obtained results, some further directions are suggested towards achieving further advances in this research area.
2020-12-02
Zhao, Q., Du, P., Gerla, M., Brown, A. J., Kim, J. H..  2018.  Software Defined Multi-Path TCP Solution for Mobile Wireless Tactical Networks. MILCOM 2018 - 2018 IEEE Military Communications Conference (MILCOM). :1—9.
Naval Battlefield Network communications rely on wireless network technologies to transmit data between different naval entities, such as ships and shore nodes. Existing naval battle networks heavily depend on the satellite communication system using single-path TCP for reliable, non-interactive data. While satisfactory for traditional use cases, this communication model may be inadequate for outlier cases, such as those arising from satellite failure and wireless signal outage. To promote network stability and assurance in such scenarios, the addition of unmanned aerial vehicles to function as relay points can complement network connectivity and alleviate potential strains in adverse conditions. The inherent mobility of aerial vehicles coupled with existing source node movements, however, leads to frequent network handovers with non-negligible overhead and communication interruption, particularly in the present single-path model. In this paper, we propose a solution based on multi-path TCP and software-defined networking, which, when applied to mobile wireless heterogeneous networks, reduces the network handover delay and improves the total throughput for transmissions among various naval entities at sea and littoral. In case of single link failure, the presence of a connectable relay point maintains TCP connectivity and reduces the risk of service interruption. To validate feasibility and to evaluate performance of our solution, we constructed a Mininet- WiFi emulation testbed. Compared against single-path TCP communication methods, execution of the testbed when configured to use multi-path TCP and UAV relays yields demonstrably more stable network handovers with relatively low overhead, greater reliability of network connectivity, and higher overall end-to-end throughput. Because the SDN global controller dynamically adjusts allocations per user, the solution effectively eliminates link congestion and promotes more efficient bandwidth utilization.
2020-11-04
Kim, Y., Ahn, S., Thang, N. C., Choi, D., Park, M..  2019.  ARP Poisoning Attack Detection Based on ARP Update State in Software-Defined Networks. 2019 International Conference on Information Networking (ICOIN). :366—371.

Recently, the novel networking technology Software-Defined Networking(SDN) and Service Function Chaining(SFC) are rapidly growing, and security issues are also emerging for SDN and SFC. However, the research about security and safety on a novel networking environment is still unsatisfactory, and the vulnerabilities have been revealed continuously. Among these security issues, this paper addresses the ARP Poisoning attack to exploit SFC vulnerability, and proposes a method to defend the attack. The proposed method recognizes the repetitive ARP reply which is a feature of ARP Poisoning attack, and detects ARP Poisoning attack. The proposed method overcomes the limitations of the existing detection methods. The proposed method also detects the presence of an attack more accurately.

2020-09-28
Madhan, E.S., Ghosh, Uttam, Tosh, Deepak K., Mandal, K., Murali, E., Ghosh, Soumalya.  2019.  An Improved Communications in Cyber Physical System Architecture, Protocols and Applications. 2019 16th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON). :1–6.
In recent trends, Cyber-Physical Systems (CPS) and Internet of Things interpret an evolution of computerized integration connectivity. The specific research challenges in CPS as security, privacy, data analytics, participate sensing, smart decision making. In addition, The challenges in Wireless Sensor Network (WSN) includes secure architecture, energy efficient protocols and quality of services. In this paper, we present an architectures of CPS and its protocols and applications. We propose software related mobile sensing paradigm namely Mobile Sensor Information Agent (MSIA). It works as plug-in based for CPS middleware and scalable applications in mobile devices. The working principle MSIA is acts intermediary device and gathers data from a various external sensors and its upload to cloud on demand. CPS needs tight integration between cyber world and man-made physical world to achieve stability, security, reliability, robustness, and efficiency in the system. Emerging software-defined networking (SDN) can be integrated as the communication infrastructure with CPS infrastructure to accomplish such system. Thus we propose a possible SDN-based CPS framework to improve the performance of the system.
2020-06-29
Kaljic, Enio, Maric, Almir, Njemcevic, Pamela.  2019.  DoS attack mitigation in SDN networks using a deeply programmable packet-switching node based on a hybrid FPGA/CPU data plane architecture. 2019 XXVII International Conference on Information, Communication and Automation Technologies (ICAT). :1–6.
The application of the concept of software-defined networks (SDN) has, on the one hand, led to the simplification and reduction of switches price, and on the other hand, has created a significant number of problems related to the security of the SDN network. In several studies was noted that these problems are related to the lack of flexibility and programmability of the data plane, which is likely first to suffer potential denial-of-service (DoS) attacks. One possible way to overcome this problem is to increase the flexibility of the data plane by increasing the depth of programmability of the packet-switching nodes below the level of flow table management. Therefore, this paper investigates the opportunity of using the architecture of deeply programmable packet-switching nodes (DPPSN) in the implementation of a firewall. Then, an architectural model of the firewall based on a hybrid FPGA/CPU data plane architecture has been proposed and implemented. Realized firewall supports three models of DoS attacks mitigation: DoS traffic filtering on the output interface, DoS traffic filtering on the input interface, and DoS attack redirection to the honeypot. Experimental evaluation of the implemented firewall has shown that DoS traffic filtering at the input interface is the best strategy for DoS attack mitigation, which justified the application of the concept of deep network programmability.
Giri, Nupur, Jaisinghani, Rahul, Kriplani, Rohit, Ramrakhyani, Tarun, Bhatia, Vinay.  2019.  Distributed Denial Of Service(DDoS) Mitigation in Software Defined Network using Blockchain. 2019 Third International conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC). :673–678.
A DDoS attack is a spiteful attempt to disrupt legitimate traffic to a server by overwhelming the target with a flood of requests from geographically dispersed systems. Today attackers prefer DDoS attack methods to disrupt target services as they generate GBs to TBs of random data to flood the target. In existing mitigation strategies, because of lack of resources and not having the flexibility to cope with attacks by themselves, they are not considered to be that effective. So effective DDoS mitigation techniques can be provided using emerging technologies such as blockchain and SDN(Software-Defined Networking). We propose an architecture where a smart contract is deployed in a private blockchain, which facilitates a collaborative DDoS mitigation architecture across multiple network domains. Blockchain application is used as an additional security service. With Blockchain, shared protection is enabled among all hosts. With help of smart contracts, rules are distributed among all hosts. In addition, SDN can effectively enable services and security policies dynamically. This mechanism provides ASes(Autonomous Systems) the possibility to deploy their own DPS(DDoS Prevention Service) and there is no need to transfer control of the network to the third party. This paper focuses on the challenges of protecting a hybridized enterprise from the ravages of rapidly evolving Distributed Denial of Service(DDoS) attack.
Xuanyuan, Ming, Ramsurrun, Visham, Seeam, Amar.  2019.  Detection and Mitigation of DDoS Attacks Using Conditional Entropy in Software-defined Networking. 2019 11th International Conference on Advanced Computing (ICoAC). :66–71.
Software-defined networking (SDN) is a relatively new technology that promotes network revolution. The most distinct characteristic of SDN is the transformation of control logic from the basic packet forwarding equipment to a centralized management unit called controller. However, the centralized control of the network resources is like a double-edged sword, for it not only brings beneficial features but also introduces single point of failure if the controller is under distributed denial of service (DDoS) attacks. In this paper, we introduce a light-weight approach based on conditional entropy to improve the SDN security with an aim of defending DDoS at the early stage. The experimental results show that the proposed method has a high average detection rate of 99.372%.
2020-06-01
Luo, Xupeng, Yan, Qiao, Wang, Mingde, Huang, Wenyao.  2019.  Using MTD and SDN-based Honeypots to Defend DDoS Attacks in IoT. 2019 Computing, Communications and IoT Applications (ComComAp). :392–395.
With the rapid development of Internet of Things (IoT), distributed denial of service (DDoS) attacks become the important security threat of the IoT. Characteristics of IoT, such as large quantities and simple function, which have easily caused the IoT devices or servers to be attacked and be turned into botnets for launching DDoS attacks. In this paper, we use software-defined networking (SDN) to develop moving target defense (MTD) architecture that increases uncertainty because of ever changing attack surface. In addition, we deploy SDN-based honeypots to mimic IoT devices, luring attackers and malwares. Finally, experimental results show that combination of MTD and SDN-based honeypots can effectively hide network asset from scanner and defend against DDoS attacks in IoT.
Park, Byungju, Dang, Sa Pham, Noh, Sichul, Yi, Junmin, Park, Minho.  2019.  Dynamic Virtual Network Honeypot. 2019 International Conference on Information and Communication Technology Convergence (ICTC). :375–377.
A honeypot system is used to trapping hackers, track and analyze new hacking methods. However, it does not only take time for construction and deployment but also costs for maintenance because these systems are always online even when there is no attack. Since the main purpose of honeypot systems is to collect more and more attack trafc if possible, the limitation of system capacity is also a major problem. In this paper, we propose Dynamic Virtual Network Honeypot (DVNH) which leverages emerging technologies, Network Function Virtualization and Software-Defined Networking. DVNH redirects the attack to the honeypot system thereby protects the targeted system. Our experiments show that DVNH enables efficient resource usage and dynamic provision of the Honeypot system.
2020-05-15
Sugrim, Shridatt, Venkatesan, Sridhar, Youzwak, Jason A., Chiang, Cho-Yu J., Chadha, Ritu, Albanese, Massimiliano, Cam, Hasan.  2018.  Measuring the Effectiveness of Network Deception. 2018 IEEE International Conference on Intelligence and Security Informatics (ISI). :142—147.

Cyber reconnaissance is the process of gathering information about a target network for the purpose of compromising systems within that network. Network-based deception has emerged as a promising approach to disrupt attackers' reconnaissance efforts. However, limited work has been done so far on measuring the effectiveness of network-based deception. Furthermore, given that Software-Defined Networking (SDN) facilitates cyber deception by allowing network traffic to be modified and injected on-the-fly, understanding the effectiveness of employing different cyber deception strategies is critical. In this paper, we present a model to study the reconnaissance surface of a network and model the process of gathering information by attackers as interactions with a cyber defensive system that may use deception. To capture the evolution of the attackers' knowledge during reconnaissance, we design a belief system that is updated by using a Bayesian inference method. For the proposed model, we present two metrics based on KL-divergence to quantify the effectiveness of network deception. We tested the model and the two metrics by conducting experiments with a simulated attacker in an SDN-based deception system. The results of the experiments match our expectations, providing support for the model and proposed metrics.

Xing, Junchi, Yang, Mingliang, Zhou, Haifeng, Wu, Chunming, Ruan, Wei.  2019.  Hiding and Trapping: A Deceptive Approach for Defending against Network Reconnaissance with Software-Defined Network. 2019 IEEE 38th International Performance Computing and Communications Conference (IPCCC). :1—8.

Network reconnaissance aims at gathering as much information as possible before an attack is launched. Meanwhile, static host address configuration facilitates network reconnaissance. Currently, more sophisticated network reconnaissance has been emerged with the adaptive and cooperative features. To address this, in this paper, we present Hiding and Trapping (HaT), which is a deceptive approach to disrupt adversarial network reconnaissance with the help of the software-defined networking (SDN) paradigm. HaT is able to hide valuable hosts from attackers and to trap them into decoy nodes through strategic and holistic host address mutation according to characteristic of adversaries. We implement a prototype of HaT, and evaluate its performance by experiments. The experimental results show that HaT is capable to effectively disrupt adversarial network reconnaissance with better deceptive performance than the existing address randomization approach.