Visible to the public Biblio

Found 352 results

Filters: Keyword is science of security  [Clear All Filters]
2017-12-28
Chowdhary, A., Dixit, V. H., Tiwari, N., Kyung, S., Huang, D., Ahn, G. J..  2017.  Science DMZ: SDN based secured cloud testbed. 2017 IEEE Conference on Network Function Virtualization and Software Defined Networks (NFV-SDN). :1–2.

Software Defined Networking (SDN) presents a unique opportunity to manage and orchestrate cloud networks. The educational institutions, like many other industries face a lot of security threats. We have established an SDN enabled Demilitarized Zone (DMZ) — Science DMZ to serve as testbed for securing ASU Internet2 environment. Science DMZ allows researchers to conduct in-depth analysis of security attacks and take necessary countermeasures using SDN based command and control (C&C) center. Demo URL: https : //www.youtube.corn/watchlv = 8yo2lTNV 3r4.

Herley, C., Oorschot, P. C. v.  2017.  SoK: Science, Security and the Elusive Goal of Security as a Scientific Pursuit. 2017 IEEE Symposium on Security and Privacy (SP). :99–120.

The past ten years has seen increasing calls to make security research more “scientific”. On the surface, most agree that this is desirable, given universal recognition of “science” as a positive force. However, we find that there is little clarity on what “scientific” means in the context of computer security research, or consensus on what a “Science of Security” should look like. We selectively review work in the history and philosophy of science and more recent work under the label “Science of Security”. We explore what has been done under the theme of relating science and security, put this in context with historical science, and offer observations and insights we hope may motivate further exploration and guidance. Among our findings are that practices on which the rest of science has reached consensus appear little used or recognized in security, and a pattern of methodological errors continues unaddressed.

Ji, J. C. M., Chua, H. N., Lee, H. S., Iranmanesh, V..  2016.  Privacy and Security: How to Differentiate Them Using Privacy-Security Tree (PST) Classification. 2016 International Conference on Information Science and Security (ICISS). :1–4.

Privacy and security have been discussed in many occasions and in most cases, the importance that these two aspects play on the information system domain are mentioned often. Many times, research is carried out on the individual information security or privacy measures where it is commonly regarded with the focus on the particular measure or both privacy and security are regarded as a whole subject. However, there have been no attempts at establishing a proper method in categorizing any form of objects of protection. Through the review done on this paper, we would like to investigate the relationship between privacy and security and form a break down the aspects of privacy and security in order to provide better understanding through determining if a measure or methodology is security, privacy oriented or both. We would recommend that in further research, a further refined formulation should be formed in order to carry out this determination process. As a result, we propose a Privacy-Security Tree (PST) in this paper that distinguishes the privacy from security measures.

Ibrahim, Rosziati, Omotunde, Habeeb.  2017.  A Hybrid Threat Model for Software Security Requirement Specification - IEEE Conference Publication.

Security is often treated as secondary or a non- functional feature of software which influences the approach of vendors and developers when describing their products often in terms of what it can do (Use Cases) or offer customers. However, tides are beginning to change as more experienced customers are beginning to demand for more secure and reliable software giving priority to confidentiality, integrity and privacy while using these applications. This paper presents the MOTH (Modeling Threats with Hybrid Techniques) framework designed to help organizations secure their software assets from attackers in order to prevent any instance of SQL Injection Attacks (SQLIAs). By focusing on the attack vectors and vulnerabilities exploited by the attackers and brainstorming over possible attacks, developers and security experts can better strategize and specify security requirements required to create secure software impervious to SQLIAs. A live web application was considered in this research work as a case study and results obtained from the hybrid models extensively exposes the vulnerabilities deep within the application and proposed resolution plans for blocking those security holes exploited by SQLIAs.
 

Amin, S..  2016.  Security games on infrastructure networks. 2016 Science of Security for Cyber-Physical Systems Workshop (SOSCYPS). :1–4.

The theory of robust control models the controller-disturbance interaction as a game where disturbance is nonstrategic. The proviso of a deliberately malicious (strategic) attacker should be considered to increase the robustness of infrastructure systems. This has become especially important since many IT systems supporting critical functionalities are vulnerable to exploits by attackers. While the usefulness of game theory methods for modeling cyber-security is well established in the literature, new game theoretic models of cyber-physical security are needed for deriving useful insights on "optimal" attack plans and defender responses, both in terms of allocation of resources and operational strategies of these players. This whitepaper presents some progress and challenges in using game-theoretic models for security of infrastructure networks. Main insights from the following models are presented: (i) Network security game on flow networks under strategic edge disruptions; (ii) Interdiction problem on distribution networks under node disruptions; (iii) Inspection game to monitor commercial non-technical losses (e.g. energy diversion); and (iv) Interdependent security game of networked control systems under communication failures. These models can be used to analyze the attacker-defender interactions in a class of cyber-physical security scenarios.

Datta, A., Kar, S., Sinopoli, B., Weerakkody, S..  2016.  Accountability in cyber-physical systems. 2016 Science of Security for Cyber-Physical Systems Workshop (SOSCYPS). :1–3.

Our position is that a key component of securing cyber-physical systems (CPS) is to develop a theory of accountability that encompasses both control and computing systems. We envision that a unified theory of accountability in CPS can be built on a foundation of causal information flow analysis. This theory will support design and analysis of mechanisms at various stages of the accountability regime: attack detection, responsibility-assignment (e.g., attack identification or localization), and corrective measures (e.g., via resilient control) As an initial step in this direction, we summarize our results on attack detection in control systems. We use the Kullback-Liebler (KL) divergence as a causal information flow measure. We then recover, using information flow analyses, a set of existing results in the literature that were previously proved using different techniques. These results cover passive detection, stealthy attack characterization, and active detection. This research direction is related to recent work on accountability in computational systems [1], [2], [3], [4]. We envision that by casting accountability theories in computing and control systems in terms of causal information flow, we can provide a common foundation to develop a theory for CPS that compose elements from both domains.

Luo, S., Wang, Y., Huang, W., Yu, H..  2016.  Backup and Disaster Recovery System for HDFS. 2016 International Conference on Information Science and Security (ICISS). :1–4.

HDFS has been widely used for storing massive scale data which is vulnerable to site disaster. The file system backup is an important strategy for data retention. In this paper, we present an efficient, easy- to-use Backup and Disaster Recovery System for HDFS. The system includes a client based on HDFS with additional feature of remote backup, and a remote server with a HDFS cluster to keep the backup data. It supports full backup and regularly incremental backup to the server with very low cost and high throughout. In our experiment, the average speed of backup and recovery is up to 95 MB/s, approaching the theoretical maximum speed of gigabit Ethernet.

Lucia, W., Sinopoli, B., Franze, G..  2016.  A set-theoretic approach for secure and resilient control of Cyber-Physical Systems subject to false data injection attacks. 2016 Science of Security for Cyber-Physical Systems Workshop (SOSCYPS). :1–5.

In this paper a novel set-theoretic control framework for Cyber-Physical Systems is presented. By resorting to set-theoretic ideas, an anomaly detector module and a control remediation strategy are formally derived with the aim to contrast cyber False Data Injection (FDI) attacks affecting the communication channels. The resulting scheme ensures Uniformly Ultimate Boundedness and constraints fulfillment regardless of any admissible attack scenario.

Sandberg, H., Teixeira, A. M. H..  2016.  From control system security indices to attack identifiability. 2016 Science of Security for Cyber-Physical Systems Workshop (SOSCYPS). :1–6.

In this paper, we investigate detectability and identifiability of attacks on linear dynamical systems that are subjected to external disturbances. We generalize a concept for a security index, which was previously introduced for static systems. The index exactly quantifies the resources necessary for targeted attacks to be undetectable and unidentifiable in the presence of disturbances. This information is useful for both risk assessment and for the design of anomaly detectors. Finally, we show how techniques from the fault detection literature can be used to decouple disturbances and to identify attacks, under certain sparsity constraints.

Kwiatkowska, M..  2016.  Advances and challenges of quantitative verification and synthesis for cyber-physical systems. 2016 Science of Security for Cyber-Physical Systems Workshop (SOSCYPS). :1–5.

We are witnessing a huge growth of cyber-physical systems, which are autonomous, mobile, endowed with sensing, controlled by software, and often wirelessly connected and Internet-enabled. They include factory automation systems, robotic assistants, self-driving cars, and wearable and implantable devices. Since they are increasingly often used in safety- or business-critical contexts, to mention invasive treatment or biometric authentication, there is an urgent need for modelling and verification technologies to support the design process, and hence improve the reliability and reduce production costs. This paper gives an overview of quantitative verification and synthesis techniques developed for cyber-physical systems, summarising recent achievements and future challenges in this important field.

Thuraisingham, B., Kantarcioglu, M., Hamlen, K., Khan, L., Finin, T., Joshi, A., Oates, T., Bertino, E..  2016.  A Data Driven Approach for the Science of Cyber Security: Challenges and Directions. 2016 IEEE 17th International Conference on Information Reuse and Integration (IRI). :1–10.

This paper describes a data driven approach to studying the science of cyber security (SoS). It argues that science is driven by data. It then describes issues and approaches towards the following three aspects: (i) Data Driven Science for Attack Detection and Mitigation, (ii) Foundations for Data Trustworthiness and Policy-based Sharing, and (iii) A Risk-based Approach to Security Metrics. We believe that the three aspects addressed in this paper will form the basis for studying the Science of Cyber Security.

Noureddine, M. A., Marturano, A., Keefe, K., Bashir, M., Sanders, W. H..  2017.  Accounting for the Human User in Predictive Security Models. 2017 IEEE 22nd Pacific Rim International Symposium on Dependable Computing (PRDC). :329–338.

Given the growing sophistication of cyber attacks, designing a perfectly secure system is not generally possible. Quantitative security metrics are thus needed to measure and compare the relative security of proposed security designs and policies. Since the investigation of security breaches has shown a strong impact of human errors, ignoring the human user in computing these metrics can lead to misleading results. Despite this, and although security researchers have long observed the impact of human behavior on system security, few improvements have been made in designing systems that are resilient to the uncertainties in how humans interact with a cyber system. In this work, we develop an approach for including models of user behavior, emanating from the fields of social sciences and psychology, in the modeling of systems intended to be secure. We then illustrate how one of these models, namely general deterrence theory, can be used to study the effectiveness of the password security requirements policy and the frequency of security audits in a typical organization. Finally, we discuss the many challenges that arise when adopting such a modeling approach, and then present our recommendations for future work.

2017-12-27
Liu, S..  2017.  Research on the design and implementation of two dimensional hyper chaotic sequence cipher algorithm. 2017 Sixth International Conference on Future Generation Communication Technologies (FGCT). :1–4.

In the information age of today, with the rapid development and wide application of communication technology and network technology, more and more information has been transmitted through the network and information security and protection is becoming more and more important, the cryptography theory and technology have become an important research field in Information Science and technology. In recent years, many researchers have found that there is a close relationship between chaos and cryptography. Chaotic system to initial conditions is extremely sensitive and can produce a large number of with good cryptographic properties of class randomness, correlation, complexity and wide spectrum sequence, provides a new and effective means for data encryption. But chaotic cryptography, as a new cross discipline, is still in its initial stage of development. Although many chaotic encryption schemes have been proposed, the method of chaotic cryptography is not yet fully mature. The research is carried out under such a background, to be used in chaotic map of the chaotic cipher system, chaotic sequence cipher, used for key generation of chaotic random number generators and other key problems is discussed. For one-dimensional chaotic encryption algorithm, key space small, security is not higher defect, this paper selects logistic mapping coupled to generate twodimensional hyper chaotic system as the research object, the research focus on the hyper chaotic sequence in the application of data encryption, in chaotic data encryption algorithm to make some beneficial attempts, at the same time, the research on applications of chaos in data encryption to do some exploring.

2017-10-24
Yu Wang, University of Illinois at Urbana-Champaign, Matthew Hale, University of Illinois at Urbana-Champaign, Magnus Egerstedt, University of Illinois at Urbana-Champaign, Geir Dullerud, University of Illinois at Urbana-Champaign.  2017.  Differentially Private Objective Functions in Distributed Cloud-based Optimization. 20th World Congress of the International Federations of Automatic Control (IFAC 2017 World Congress).

Abstract—In this work, we study the problem of keeping the objective functions of individual agents "-differentially private in cloud-based distributed optimization, where agents are subject to global constraints and seek to minimize local objective functions. The communication architecture between agents is cloud-based – instead of communicating directly with each other, they oordinate by sharing states through a trusted cloud computer. In this problem, the difficulty is twofold: the objective functions are used repeatedly in every iteration, and the influence of  erturbing them extends to other agents and lasts over time. To solve the problem, we analyze the propagation of perturbations on objective functions over time, and derive an upper bound on them. With the upper bound, we design a noise-adding mechanism that randomizes the cloudbased distributed optimization algorithm to keep the individual objective functions "-differentially private. In addition, we study the trade-off between the privacy of objective functions and the performance of the new cloud-based distributed optimization algorithm with noise. We present simulation results to numerically verify the theoretical results presented.

John C. Mace, Newcastle University, Nipun Thekkummal, Newcastle University, Charles Morisset, Newcastle University, Aad Van Moorsel, Newcastle University.  2017.  ADaCS: A Tool for Analysing Data Collection Strategies. European Workshop on Performance Engineering (EPEW 2017).

Given a model with multiple input parameters, and multiple possible sources for collecting data for those parameters, a data collection strategy is a way of deciding from which sources to sample data, in order to reduce the variance on the output of the model. Cain and Van Moorsel have previously formulated the problem of optimal data collection strategy, when each arameter can be associated with a prior normal distribution, and when sampling is associated with a cost. In this paper, we present ADaCS, a new tool built as an extension of PRISM, which automatically analyses all possible data collection strategies for a model, and selects the optimal one. We illustrate ADaCS on attack trees, which are a structured approach to analyse the impact and the likelihood of success of attacks and defenses on computer and socio-technical systems. Furthermore, we introduce a new strategy exploration heuristic that significantly improves on a brute force approach.

Atul Bohara, University of Illinois at Urbana-Champaign, Mohammad A. Noureddine, University of Illinois at Urbana-Champaign, Ahmed Fawaz, University of Illinois at Urbana-Champaign, William Sanders, University of Illinois at Urbana-Champaign.  2017.  An Unsupervised Multi-Detector Approach for Identifying Malicious Lateral Movement. IEEE 36th Symposium on Reliable Distributed Systems (SRDS).

Abstract—Lateral movement-based attacks are increasingly leading to compromises in large private and government networks, often resulting in information exfiltration or service disruption. Such attacks are often slow and stealthy and usually evade existing security products. To enable effective detection of such attacks, we present a new approach based on graph-based modeling of the security state of the target system and correlation of diverse indicators of anomalous host behavior. We believe that irrespective of the specific attack vectors used, attackers typically establish a command and control channel to operate, and move in the target system to escalate their privileges and reach sensitive areas. Accordingly, we identify important features of command and control and lateral movement activities and extract them from internal and external communication traffic. Driven by the analysis of the features, we propose the use of multiple anomaly detection techniques to identify compromised hosts. These methods include Principal Component Analysis, k-means clustering, and Median Absolute Deviation-based utlier detection. We evaluate the accuracy of identifying compromised hosts by using injected attack traffic in a real enterprise network dataset, for various attack communication models. Our results show that the proposed approach can detect infected hosts with high accuracy and a low false positive rate.

2017-09-01
Carmen Cheh, University of Illinois at Urbana-Champaign, Binbin Chen, Advanced Digital Sciences Center, Singapore, William G. Temple, A, Advanced Digital Sciences Center, Singapore, William H. Sanders, University of Illinois at Urbana-Champaign.  2017.  Data-Driven Model-Based Detection of Malicious Insiders via Physical Access Logs. 14th International Conference on Quantitative Evaluation of Systems (QEST 2017).

The risk posed by insider threats has usually been approached by analyzing the behavior of users solely in the cyber domain. In this paper, we show the viability of using physical movement logs, collected via a building access control system, together with an understanding of the layout of the building housing the system’s assets, to detect malicious insider behavior that manifests itself in the physical domain. In particular, we propose a systematic framework that uses contextual knowledge about the system and its users, learned from historical data gathered from a building access control system, to select suitable models for representing movement behavior. We then explore the online usage of the learned models, together with knowledge about the layout of the building being monitored, to detect malicious insider behavior. Finally, we show the effectiveness of the developed framework using real-life data traces of user movement in railway transit stations.

Dong Jin, Illinois Institute of Technology, Zhiyi Li, Illinois Institute of Technology, Christopher Hannon, Illinois Institute of Technology, Chen Chen, Argonne National Laboratory, Jianhui Wang, Argonne National Laboratory, Mohammad Shahidehpour, Illinois Institute of Technology, Cheol Won Lee, National Research Institute, South Korea.  2017.  Toward a Cyber Resilient and Secure Microgrid Using Software-Defined Networking. IEEE Transactions on Smart Grid. 8(5)

To build a resilient and secure microgrid in the face of growing cyber-attacks and cyber-mistakes, we present a software-defined networking (SDN)-based communication network architecture for microgrid operations. We leverage the global visibility, direct networking controllability, and programmability offered by SDN to investigate multiple security applications, including self-healing communication network management, real-time and uncertainty-aware communication network verification, and specification-based intrusion detection. We also expand a novel cyber-physical testing and evaluation platform that combines a power distribution system simulator (for microgrid energy services) and an SDN emulator with a distributed control environment (for microgrid communications). Experimental results demonstrate that the SDN-based communication architecture and applications can significantly enhance the resilience and security of microgrid operations against the realization of various cyber threats.

Ning Liu, Illinois Institute of Technology, Adnan Haider, Illinois Institute of Technology, Dong Jin, Illinois Institute of Technology, Xian He Sun, Illinois Institute of Technology.  2017.  Modeling and Simulation of Extreme-Scale Fat-Tree Networks for HPC Systems and Data Centers. ACM Transactions on Modeling and Computer Simulation (TOMACS). 27(July 2017):2.

As parallel and distributed systems are evolving toward extreme scale, for example, high-performance computing systems involve millions of cores and billion-way parallelism, and high- capacity storage systems require efficient access to petabyte or exabyte of data, many new challenges are posed on designing and deploying next-generation interconnection communication networks in these systems. Fat-tree networks have been widely used in both data centers and high-performance computing (HPC) systems in the past decades and are promising candidates of the next-generation extreme-scale networks. In this article, we present FatTreeSim, a simulation framework that supports modeling and simulation of extreme-scale fattree networks with the goal of understanding the design constraints of next-generation HPC and distributed systems and aiding the design and performance optimization of the applications running on these systems. We have systematically experimented FatTreeSim on Emulab and Blue Gene/Q and analyzed the scalability and fidelity of FatTreeSim with various network configurations. On the Blue Gene/Q Mira, FatTreeSim can achieve a peak performance of 305 million events per second using 16,384 cores. Finally, we have applied FatTreeSim to simulate several large-scale Hadoop YARN applications to demonstrate its usability.

2017-08-03
Xinyu Zhou, University of Maryland at College Park, David Nicol, University of Illinois at Urbana-Champaign.  2017.  Trust-Aware Failure Detector in Multi-Agent Systems.

Poster presented at the 2017 Science of Security UIUC Lablet Summer Internship Poster Session held on July 27, 2017 in Urbana, IL.

Shubham Goel, University of Illinois at Urbana-Champaign, Masooda Bashir, University of Illinois at Urbana-Champaign.  2017.  Ransomware: Recommendations against the Extortion.

Poster presented at the 2017 Science of Security UIUC Lablet Summer Internship Poster Session held on July 27, 2017 in Urbana, IL.

2017-07-19
Benjamin E. Ujcich, University of Illinois at Urbana-Champaign, Andrew Miller, University of Illinois at Urbana-Champaign, Adam Bates, University of Illinois at Urbana-Champaign, William H. Sanders, University of Illinois at Urbana-Champaign.  2017.  Towards an Accountable Software-Defined Networking Architecture. 3rd IEEE Conference on Network Softwarization (NetSoft 2017).

Software-defined networking (SDN) overcomes many limitations of traditional networking architectures because of its programmable and flexible nature. Security applications,for instance, can dynamically reprogram a network to respond to ongoing threats in real time. However, the same flexibility also creates risk, since it can be used against the network. Current SDN architectures potentially allow adversaries to disrupt one or more SDN system components and to hide their actions in doing so. That makes assurance and reasoning about past network
events more difficult, if not impossible. In this paper, we argue that an SDN architecture must incorporate various notions of accountability for achieving systemwide cyber resiliency goals.
We analyze accountability based on a conceptual framework, and we identify how that analysis fits in with the SDN architecture’s entities and processes. We further consider a case study in which accountability is necessary for SDN network applications, and we discuss the limits of current approaches.

Joao Jansch Porto, Geir Dullerud, University of Illinois at Urbana-Champaign.  2017.  Decentralized Control with Moving-Horizon Linear Switched Systems: Synthesis and Testbed Implementation. American Control Conference 2017.

In this paper, we improve recent results on the decentralized switched control problem to include the moving horizon case and apply it to a testbed system. Using known derivations for a centralized controller with look-ahead, we were able to extend the decentralized problem with finite memory to include receding horizon modal information. We then compare the performance of a switched controller with finite memory and look-ahead horizon to that of a linear time independent (LTI) controller using a simulation. The decentralized controller is further tested with a real-world system comprised of multiple model-sized hovercrafts.