Visible to the public Biblio

Filters: Keyword is DeepFake  [Clear All Filters]
2023-06-29
Wang, Zhichao.  2022.  Deep Learning Methods for Fake News Detection. 2022 IEEE 2nd International Conference on Data Science and Computer Application (ICDSCA). :472–475.

Nowadays, although it is much more convenient to obtain news with social media and various news platforms, the emergence of all kinds of fake news has become a headache and urgent problem that needs to be solved. Currently, the fake news recognition algorithm for fake news mainly uses GCN, including some other niche algorithms such as GRU, CNN, etc. Although all fake news verification algorithms can reach quite a high accuracy with sufficient datasets, there is still room for improvement for unsupervised learning and semi-supervised. This article finds that the accuracy of the GCN method for fake news detection is basically about 85% through comparison with other neural network models, which is satisfactory, and proposes that the current field lacks a unified training dataset, and that in the future fake news detection models should focus more on semi-supervised learning and unsupervised learning.

Jayakody, Nirosh, Mohammad, Azeem, Halgamuge, Malka N..  2022.  Fake News Detection using a Decentralized Deep Learning Model and Federated Learning. IECON 2022 – 48th Annual Conference of the IEEE Industrial Electronics Society. :1–6.

Social media has beneficial and detrimental impacts on social life. The vast distribution of false information on social media has become a worldwide threat. As a result, the Fake News Detection System in Social Networks has risen in popularity and is now considered an emerging research area. A centralized training technique makes it difficult to build a generalized model by adapting numerous data sources. In this study, we develop a decentralized Deep Learning model using Federated Learning (FL) for fake news detection. We utilize an ISOT fake news dataset gathered from "Reuters.com" (N = 44,898) to train the deep learning model. The performance of decentralized and centralized models is then assessed using accuracy, precision, recall, and F1-score measures. In addition, performance was measured by varying the number of FL clients. We identify the high accuracy of our proposed decentralized FL technique (accuracy, 99.6%) utilizing fewer communication rounds than in previous studies, even without employing pre-trained word embedding. The highest effects are obtained when we compare our model to three earlier research. Instead of a centralized method for false news detection, the FL technique may be used more efficiently. The use of Blockchain-like technologies can improve the integrity and validity of news sources.

ISSN: 2577-1647

Sahib, Ihsan, AlAsady, Tawfiq Abd Alkhaliq.  2022.  Deep fake Image Detection based on Modified minimized Xception Net and DenseNet. 2022 5th International Conference on Engineering Technology and its Applications (IICETA). :355–360.

This paper deals with the problem of image forgery detection because of the problems it causes. Where The Fake im-ages can lead to social problems, for example, misleading the public opinion on political or religious personages, de-faming celebrities and people, and Presenting them in a law court as evidence, may Doing mislead the court. This work proposes a deep learning approach based on Deep CNN (Convolutional Neural Network) Architecture, to detect fake images. The network is based on a modified structure of Xception net, CNN based on depthwise separable convolution layers. After extracting the feature maps, pooling layers are used with dense connection with Xception output, to in-crease feature maps. Inspired by the idea of a densenet network. On the other hand, the work uses the YCbCr color system for images, which gave better Accuracy of %99.93, more than RGB, HSV, and Lab or other color systems.

ISSN: 2831-753X

Mahara, Govind Singh, Gangele, Sharad.  2022.  Fake news detection: A RNN-LSTM, Bi-LSTM based deep learning approach. 2022 IEEE 1st International Conference on Data, Decision and Systems (ICDDS). :01–06.

Fake news is a new phenomenon that promotes misleading information and fraud via internet social media or traditional news sources. Fake news is readily manufactured and transmitted across numerous social media platforms nowadays, and it has a significant influence on the real world. It is vital to create effective algorithms and tools for detecting misleading information on social media platforms. Most modern research approaches for identifying fraudulent information are based on machine learning, deep learning, feature engineering, graph mining, image and video analysis, and newly built datasets and online services. There is a pressing need to develop a viable approach for readily detecting misleading information. The deep learning LSTM and Bi-LSTM model was proposed as a method for detecting fake news, In this work. First, the NLTK toolkit was used to remove stop words, punctuation, and special characters from the text. The same toolset is used to tokenize and preprocess the text. Since then, GLOVE word embeddings have incorporated higher-level characteristics of the input text extracted from long-term relationships between word sequences captured by the RNN-LSTM, Bi-LSTM model to the preprocessed text. The proposed model additionally employs dropout technology with Dense layers to improve the model's efficiency. The proposed RNN Bi-LSTM-based technique obtains the best accuracy of 94%, and 93% using the Adam optimizer and the Binary cross-entropy loss function with Dropout (0.1,0.2), Once the Dropout range increases it decreases the accuracy of the model as it goes 92% once Dropout (0.3).

Abbas, Qamber, Zeshan, Muhammad Umar, Asif, Muhammad.  2022.  A CNN-RNN Based Fake News Detection Model Using Deep Learning. 2022 International Seminar on Computer Science and Engineering Technology (SCSET). :40–45.

False news has become widespread in the last decade in political, economic, and social dimensions. This has been aided by the deep entrenchment of social media networking in these dimensions. Facebook and Twitter have been known to influence the behavior of people significantly. People rely on news/information posted on their favorite social media sites to make purchase decisions. Also, news posted on mainstream and social media platforms has a significant impact on a particular country’s economic stability and social tranquility. Therefore, there is a need to develop a deceptive system that evaluates the news to avoid the repercussions resulting from the rapid dispersion of fake news on social media platforms and other online platforms. To achieve this, the proposed system uses the preprocessing stage results to assign specific vectors to words. Each vector assigned to a word represents an intrinsic characteristic of the word. The resulting word vectors are then applied to RNN models before proceeding to the LSTM model. The output of the LSTM is used to determine whether the news article/piece is fake or otherwise.

Bide, Pramod, Varun, Patil, Gaurav, Shah, Samveg, Patil, Sakshi.  2022.  Fakequipo: Deep Fake Detection. 2022 IEEE 3rd Global Conference for Advancement in Technology (GCAT). :1–5.

Deep learning have a variety of applications in different fields such as computer vision, automated self-driving cars, natural language processing tasks and many more. One of such deep learning adversarial architecture changed the fundamentals of the data manipulation. The inception of Generative Adversarial Network (GAN) in the computer vision domain drastically changed the way how we saw and manipulated the data. But this manipulation of data using GAN has found its application in various type of malicious activities like creating fake images, swapped videos, forged documents etc. But now, these generative models have become so efficient at manipulating the data, especially image data, such that it is creating real life problems for the people. The manipulation of images and videos done by the GAN architectures is done in such a way that humans cannot differentiate between real and fake images/videos. Numerous researches have been conducted in the field of deep fake detection. In this paper, we present a structured survey paper explaining the advantages, gaps of the existing work in the domain of deep fake detection.

Kanagavalli, N., Priya, S. Baghavathi, D, Jeyakumar.  2022.  Design of Hyperparameter Tuned Deep Learning based Automated Fake News Detection in Social Networking Data. 2022 6th International Conference on Computing Methodologies and Communication (ICCMC). :958–963.

Recently, social networks have become more popular owing to the capability of connecting people globally and sharing videos, images and various types of data. A major security issue in social media is the existence of fake accounts. It is a phenomenon that has fake accounts that can be frequently utilized by mischievous users and entities, which falsify, distribute, and duplicate fake news and publicity. As the fake news resulted in serious consequences, numerous research works have focused on the design of automated fake accounts and fake news detection models. In this aspect, this study designs a hyperparameter tuned deep learning based automated fake news detection (HDL-FND) technique. The presented HDL-FND technique accomplishes the effective detection and classification of fake news. Besides, the HDLFND process encompasses a three stage process namely preprocessing, feature extraction, and Bi-Directional Long Short Term Memory (BiLSTM) based classification. The correct way of demonstrating the promising performance of the HDL-FND technique, a sequence of replications were performed on the available Kaggle dataset. The investigational outcomes produce improved performance of the HDL-FND technique in excess of the recent approaches in terms of diverse measures.

Rahman, Md. Shahriar, Ashraf, Faisal Bin, Kabir, Md. Rayhan.  2022.  An Efficient Deep Learning Technique for Bangla Fake News Detection. 2022 25th International Conference on Computer and Information Technology (ICCIT). :206–211.

People connect with a plethora of information from many online portals due to the availability and ease of access to the internet and electronic communication devices. However, news portals sometimes abuse press freedom by manipulating facts. Most of the time, people are unable to discriminate between true and false news. It is difficult to avoid the detrimental impact of Bangla fake news from spreading quickly through online channels and influencing people’s judgment. In this work, we investigated many real and false news pieces in Bangla to discover a common pattern for determining if an article is disseminating incorrect information or not. We developed a deep learning model that was trained and validated on our selected dataset. For learning, the dataset contains 48,678 legitimate news and 1,299 fraudulent news. To deal with the imbalanced data, we used random undersampling and then ensemble to achieve the combined output. In terms of Bangla text processing, our proposed model achieved an accuracy of 98.29% and a recall of 99%.

Matheven, Anand, Kumar, Burra Venkata Durga.  2022.  Fake News Detection Using Deep Learning and Natural Language Processing. 2022 9th International Conference on Soft Computing & Machine Intelligence (ISCMI). :11–14.

The rise of social media has brought the rise of fake news and this fake news comes with negative consequences. With fake news being such a huge issue, efforts should be made to identify any forms of fake news however it is not so simple. Manually identifying fake news can be extremely subjective as determining the accuracy of the information in a story is complex and difficult to perform, even for experts. On the other hand, an automated solution would require a good understanding of NLP which is also complex and may have difficulties producing an accurate output. Therefore, the main problem focused on this project is the viability of developing a system that can effectively and accurately detect and identify fake news. Finding a solution would be a significant benefit to the media industry, particularly the social media industry as this is where a large proportion of fake news is published and spread. In order to find a solution to this problem, this project proposed the development of a fake news identification system using deep learning and natural language processing. The system was developed using a Word2vec model combined with a Long Short-Term Memory model in order to showcase the compatibility of the two models in a whole system. This system was trained and tested using two different dataset collections that each consisted of one real news dataset and one fake news dataset. Furthermore, three independent variables were chosen which were the number of training cycles, data diversity and vector size to analyze the relationship between these variables and the accuracy levels of the system. It was found that these three variables did have a significant effect on the accuracy of the system. From this, the system was then trained and tested with the optimal variables and was able to achieve the minimum expected accuracy level of 90%. The achieving of this accuracy levels confirms the compatibility of the LSTM and Word2vec model and their capability to be synergized into a single system that is able to identify fake news with a high level of accuracy.

ISSN: 2640-0146

2022-04-25
Ajoy, Atmik, Mahindrakar, Chethan U, Gowrish, Dhanya, A, Vinay.  2021.  DeepFake Detection using a frame based approach involving CNN. 2021 Third International Conference on Inventive Research in Computing Applications (ICIRCA). :1329–1333.
This paper proposes a novel model to detect Deep-Fakes, which are hyper-realistic fake videos generated by advanced AI algorithms involving facial superimposition. With a growing number of DeepFakes involving prominent political figures that hold a lot of social capital, their misuse can lead to drastic repercussions. These videos can not only be used to circulate false information causing harm to reputations of individuals, companies and countries, but also has the potential to cause civil unrest through mass hysteria. Hence it is of utmost importance to detect these DeepFakes and promptly curb their spread. We therefore propose a CNN-based model that learns inherently distinct patterns that change between a DeepFake and a real video. These distinct features include pixel distortion, inconsistencies with facial superimposition, skin colour differences, blurring and other visual artifacts. The proposed model has trained a CNN (Convolutional Neural Network), to effectively distinguish DeepFake videos using a frame-based approach based on aforementioned distinct features. Herein, the proposed work demonstrates the viability of our model in effectively identifying Deepfake faces in a given video source, so as to aid security applications employed by social-media platforms in credibly tackling the ever growing threat of Deepfakes, by effectively gauging the authenticity of videos, so that they may be flagged or ousted before they can cause irreparable harm.
Hussain, Shehzeen, Neekhara, Paarth, Jere, Malhar, Koushanfar, Farinaz, McAuley, Julian.  2021.  Adversarial Deepfakes: Evaluating Vulnerability of Deepfake Detectors to Adversarial Examples. 2021 IEEE Winter Conference on Applications of Computer Vision (WACV). :3347–3356.
Recent advances in video manipulation techniques have made the generation of fake videos more accessible than ever before. Manipulated videos can fuel disinformation and reduce trust in media. Therefore detection of fake videos has garnered immense interest in academia and industry. Recently developed Deepfake detection methods rely on Deep Neural Networks (DNNs) to distinguish AI-generated fake videos from real videos. In this work, we demonstrate that it is possible to bypass such detectors by adversarially modifying fake videos synthesized using existing Deepfake generation methods. We further demonstrate that our adversarial perturbations are robust to image and video compression codecs, making them a real-world threat. We present pipelines in both white-box and black-box attack scenarios that can fool DNN based Deepfake detectors into classifying fake videos as real.
Khichi, Manish, Kumar Yadav, Rajesh.  2021.  A Threat of Deepfakes as a Weapon on Digital Platform and their Detection Methods. 2021 12th International Conference on Computing Communication and Networking Technologies (ICCCNT). :01–08.
Advances in machine learning, deep learning, and Artificial Intelligence(AI) allows people to exchange other people's faces and voices in videos to make it look like what they did or say whatever you want to say. These videos and photos are called “deepfake” and are getting more complicated every day and this has lawmakers worried. This technology uses machine learning technology to provide computers with real data about images, so that we can make forgeries. The creators of Deepfake use artificial intelligence and machine learning algorithms to mimic the work and characteristics of real humans. It differs from counterfeit traditional media because it is difficult to identify. As In the 2020 elections loomed, AI-generated deepfakes were hit the news cycle. DeepFakes threatens facial recognition and online content. This deception can be dangerous, because if used incorrectly, this technique can be abused. Fake video, voice, and audio clips can do enormous damage. This paper examines the algorithms used to generate deepfakes as well as the methods proposed to detect them. We go through the threats, research patterns, and future directions for deepfake technologies in detail. This research provides a detailed description of deep imitation technology and encourages the creation of new and more powerful methods to deal with increasingly severe deep imitation by studying the history of deep imitation.
Khalil, Hady A., Maged, Shady A..  2021.  Deepfakes Creation and Detection Using Deep Learning. 2021 International Mobile, Intelligent, and Ubiquitous Computing Conference (MIUCC). :1–4.
Deep learning has been used in a wide range of applications like computer vision, natural language processing and image detection. The advancement in deep learning algorithms in image detection and manipulation has led to the creation of deepfakes, deepfakes use deep learning algorithms to create fake images that are at times very hard to distinguish from real images. With the rising concern around personal privacy and security, Many methods to detect deepfake images have emerged, in this paper the use of deep learning for creating as well as detecting deepfakes is explored, this paper also propose the use of deep learning image enhancement method to improve the quality of deepfakes created.
Joseph, Zane, Nyirenda, Clement.  2021.  Deepfake Detection using a Two-Stream Capsule Network. 2021 IST-Africa Conference (IST-Africa). :1–8.
This paper aims to address the problem of Deepfake Detection using a Two-Stream Capsule Network. First we review methods used to create Deepfake content, as well as methods proposed in the literature to detect such Deepfake content. We then propose a novel architecture to detect Deepfakes, which consists of a two-stream Capsule network running in parallel that takes in both RGB images/frames as well as Error Level Analysis images. Results show that the proposed approach exhibits the detection accuracy of 73.39 % and 57.45 % for the Deepfake Detection Challenge (DFDC) and the Celeb-DF datasets respectively. These results are, however, from a preliminary implementation of the proposed approach. As part of future work, population-based optimization techniques such as Particle Swarm Optimization (PSO) will be used to tune the hyper parameters for better performance.
Ahmed, Mohammad Faisal Bin, Miah, M. Saef Ullah, Bhowmik, Abhijit, Sulaiman, Juniada Binti.  2021.  Awareness to Deepfake: A resistance mechanism to Deepfake. 2021 International Congress of Advanced Technology and Engineering (ICOTEN). :1–5.
The goal of this study is to find whether exposure to Deepfake videos makes people better at detecting Deepfake videos and whether it is a better strategy against fighting Deepfake. For this study a group of people from Bangladesh has volunteered. This group were exposed to a number of Deepfake videos and asked subsequent questions to verify improvement on their level of awareness and detection in context of Deepfake videos. This study has been performed in two phases, where second phase was performed to validate any generalization. The fake videos are tailored for the specific audience and where suited, are created from scratch. Finally, the results are analyzed, and the study’s goals are inferred from the obtained data.
Li, Yuezun, Zhang, Cong, Sun, Pu, Ke, Lipeng, Ju, Yan, Qi, Honggang, Lyu, Siwei.  2021.  DeepFake-o-meter: An Open Platform for DeepFake Detection. 2021 IEEE Security and Privacy Workshops (SPW). :277–281.
In recent years, the advent of deep learning-based techniques and the significant reduction in the cost of computation resulted in the feasibility of creating realistic videos of human faces, commonly known as DeepFakes. The availability of open-source tools to create DeepFakes poses as a threat to the trustworthiness of the online media. In this work, we develop an open-source online platform, known as DeepFake-o-meter, that integrates state-of-the-art DeepFake detection methods and provide a convenient interface for the users. We describe the design and function of DeepFake-o-meter in this work.
Son, Seok Bin, Park, Seong Hee, Lee, Youn Kyu.  2021.  A Measurement Study on Gray Channel-based Deepfake Detection. 2021 International Conference on Information and Communication Technology Convergence (ICTC). :428–430.
Deepfake detection techniques have been widely studied to resolve security issues. However, existing techniques mainly focused on RGB channel-based analysis, which still shows incomplete detection accuracy. In this paper, we validate the performance of Gray channel-based deepfake detection. To compare RGB channel-based analysis and Gray channel-based analysis in deepfake detection, we quantitatively measured the performance by using popular CNN models, deepfake datasets, and evaluation indicators. Our experimental results confirm that Gray channel-based deepfake detection outperforms RGB channel-based deepfake detection in terms of accuracy and analysis time.
Jaiswal, Gaurav.  2021.  Hybrid Recurrent Deep Learning Model for DeepFake Video Detection. 2021 IEEE 8th Uttar Pradesh Section International Conference on Electrical, Electronics and Computer Engineering (UPCON). :1–5.
Nowadays deepfake videos are concern with social ethics, privacy and security. Deepfake videos are synthetically generated videos that are generated by modifying the facial features and audio features to impose one person’s facial data and audio to other videos. These videos can be used for defaming and fraud. So, counter these types of manipulations and threats, detection of deepfake video is needed. This paper proposes multilayer hybrid recurrent deep learning models for deepfake video detection. Proposed models exploit the noise-based temporal facial convolutional features and temporal learning of hybrid recurrent deep learning models. Experiment results of these models demonstrate its performance over stacked recurrent deep learning models.
2022-04-19
Lee, Soo-Hyun, Yun, Gyung-Eun, Lim, Min Young, Lee, Youn Kyu.  2021.  A Study on Effective Use of BPM Information in Deepfake Detection. 2021 International Conference on Information and Communication Technology Convergence (ICTC). :425–427.
Recent developments in deepfake technology are increasing new security threats. To solve these issues, various detection methods have been proposed including the methods utilizing biological signals captured by R-PPG. However, existing methods have limitations in terms of detection accuracy and generalized performance. In this paper, we present our approach for R-PPG-based BPM (Beats Per Minute) analysis for effective deepfake detection. With the selected deepfake datasets, we performed (a) comparison and analysis of conditions for BPM processing, and (b) BPM extraction by dividing the face into 16 regions and comparison of BPM in each region. The results showed that our proposed BPM-related properties are effective in deepfake detection.
2022-01-25
Wynn, Nathan, Johnsen, Kyle, Gonzalez, Nick.  2021.  Deepfake Portraits in Augmented Reality for Museum Exhibits. 2021 IEEE International Symposium on Mixed and Augmented Reality Adjunct (ISMAR-Adjunct). :513—514.
In a collaboration with the Georgia Peanut Commission’s Education Center and museum in Georgia, USA, we developed an augmented reality app to guide visitors through the museum and offer immersive educational information about the artifacts, exhibits, and artwork displayed therein. Notably, our augmented reality system applies the First Order Motion Model for Image Animation to several portraits of individuals influential to the Georgia peanut industry to provide immersive animated narration and monologue regarding their contributions to the peanut industry. [4]
2021-01-15
Brockschmidt, J., Shang, J., Wu, J..  2019.  On the Generality of Facial Forgery Detection. 2019 IEEE 16th International Conference on Mobile Ad Hoc and Sensor Systems Workshops (MASSW). :43—47.
A variety of architectures have been designed or repurposed for the task of facial forgery detection. While many of these designs have seen great success, they largely fail to address challenges these models may face in practice. A major challenge is posed by generality, wherein models must be prepared to perform in a variety of domains. In this paper, we investigate the ability of state-of-the-art facial forgery detection architectures to generalize. We first propose two criteria for generality: reliably detecting multiple spoofing techniques and reliably detecting unseen spoofing techniques. We then devise experiments which measure how a given architecture performs against these criteria. Our analysis focuses on two state-of-the-art facial forgery detection architectures, MesoNet and XceptionNet, both being convolutional neural networks (CNNs). Our experiments use samples from six state-of-the-art facial forgery techniques: Deepfakes, Face2Face, FaceSwap, GANnotation, ICface, and X2Face. We find MesoNet and XceptionNet show potential to generalize to multiple spoofing techniques but with a slight trade-off in accuracy, and largely fail against unseen techniques. We loosely extrapolate these results to similar CNN architectures and emphasize the need for better architectures to meet the challenges of generality.
McCloskey, S., Albright, M..  2019.  Detecting GAN-Generated Imagery Using Saturation Cues. 2019 IEEE International Conference on Image Processing (ICIP). :4584—4588.
Image forensics is an increasingly relevant problem, as it can potentially address online disinformation campaigns and mitigate problematic aspects of social media. Of particular interest, given its recent successes, is the detection of imagery produced by Generative Adversarial Networks (GANs), e.g. `deepfakes'. Leveraging large training sets and extensive computing resources, recent GANs can be trained to generate synthetic imagery which is (in some ways) indistinguishable from real imagery. We analyze the structure of the generating network of a popular GAN implementation [1], and show that the network's treatment of exposure is markedly different from a real camera. We further show that this cue can be used to distinguish GAN-generated imagery from camera imagery, including effective discrimination between GAN imagery and real camera images used to train the GAN.
Yang, X., Li, Y., Lyu, S..  2019.  Exposing Deep Fakes Using Inconsistent Head Poses. ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). :8261—8265.
In this paper, we propose a new method to expose AI-generated fake face images or videos (commonly known as the Deep Fakes). Our method is based on the observations that Deep Fakes are created by splicing synthesized face region into the original image, and in doing so, introducing errors that can be revealed when 3D head poses are estimated from the face images. We perform experiments to demonstrate this phenomenon and further develop a classification method based on this cue. Using features based on this cue, an SVM classifier is evaluated using a set of real face images and Deep Fakes.
Matern, F., Riess, C., Stamminger, M..  2019.  Exploiting Visual Artifacts to Expose Deepfakes and Face Manipulations. 2019 IEEE Winter Applications of Computer Vision Workshops (WACVW). :83—92.
High quality face editing in videos is a growing concern and spreads distrust in video content. However, upon closer examination, many face editing algorithms exhibit artifacts that resemble classical computer vision issues that stem from face tracking and editing. As a consequence, we wonder how difficult it is to expose artificial faces from current generators? To this end, we review current facial editing methods and several characteristic artifacts from their processing pipelines. We also show that relatively simple visual artifacts can be already quite effective in exposing such manipulations, including Deepfakes and Face2Face. Since the methods are based on visual features, they are easily explicable also to non-technical experts. The methods are easy to implement and offer capabilities for rapid adjustment to new manipulation types with little data available. Despite their simplicity, the methods are able to achieve AUC values of up to 0.866.
Akhtar, Z., Dasgupta, D..  2019.  A Comparative Evaluation of Local Feature Descriptors for DeepFakes Detection. 2019 IEEE International Symposium on Technologies for Homeland Security (HST). :1—5.
The global proliferation of affordable photographing devices and readily-available face image and video editing software has caused a remarkable rise in face manipulations, e.g., altering face skin color using FaceApp. Such synthetic manipulations are becoming a very perilous problem, as altered faces not only can fool human experts but also have detrimental consequences on automated face identification systems (AFIS). Thus, it is vital to formulate techniques to improve the robustness of AFIS against digital face manipulations. The most prominent countermeasure is face manipulation detection, which aims at discriminating genuine samples from manipulated ones. Over the years, analysis of microtextural features using local image descriptors has been successfully used in various applications owing to their flexibility, computational simplicity, and performances. Therefore, in this paper, we study the possibility of identifying manipulated faces via local feature descriptors. The comparative experimental investigation of ten local feature descriptors on a new and publicly available DeepfakeTIMIT database is reported.