Visible to the public Biblio

Found 288 results

Filters: Keyword is simulation  [Clear All Filters]
2022-03-23
Xing, Ningzhe, Wu, Peng, Jin, Shen, Yao, Jiming, Xu, Zhichen.  2021.  Task Classification Unloading Algorithm For Mobile Edge Computing in Smart Grid. 2021 IEEE 5th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC). 5:1636—1640.
With the rapid development of smart grid, the data generated by grid services are growing rapidly, and the requirements for time delay are becoming more and more stringent. The storage and computing capacity of the existing terminal equipment can not meet the needs of high bandwidth and low delay of the system at the same time. Fortunately, mobile edge computing (MEC) can provide users with nearby storage and computing services at the network edge, this can give an option to simultaneously meet the requirement of high bandwidth and low delay. Aiming at the problem of service offload scheduling in edge computing, this paper proposes a delay optimized task offload algorithm based on task priority classification. Firstly, the priority of power grid services is divided by using analytic hierarchy process (AHP), and the processing efficiency and quality of service of emergency tasks are guaranteed by giving higher weight coefficients to delay constraints and security levels. Secondly, the service is initialized and unloaded according to the task preprocessing time. Finally, the reasonable subchannel allocation is carried out based on the task priority design decision method. Simulation results show that compared with the traditional approaches, our algorithm can effectively improve the overall system revenue and reduce the average user task delay.
Karimi, A., Ahmadi, A., Shahbazi, Z., Shafiee, Q., Bevrani, H..  2021.  A Resilient Control Method Against False Data Injection Attack in DC Microgrids. 2021 7th International Conference on Control, Instrumentation and Automation (ICCIA). :1—6.

The expression of cyber-attacks on communication links in smart grids has emerged recently. In microgrids, cooperation between agents through communication links is required, thus, microgrids can be considered as cyber-physical-systems and they are vulnerable to cyber-attack threats. Cyber-attacks can cause damages in control systems, therefore, the resilient control methods are necessary. In this paper, a resilient control approach against false data injection attack is proposed for secondary control of DC microgrids. In the proposed framework, a PI controller with an adjustable gain is utilized to eliminate the injected false data. The proposed control method is employed for both sensor and link attacks. Convergence analysis of the measurement sensors and the secondary control objectives under the studied control method is performed. Finally, a DC microgrid with four units is built in Matlab/Simulink environment to verify the proposed approach.

Luo, Baiting, Liu, Xiangguo, Zhu, Qi.  2021.  Credibility Enhanced Temporal Graph Convolutional Network Based Sybil Attack Detection On Edge Computing Servers. 2021 IEEE Intelligent Vehicles Symposium (IV). :524—531.
The emerging vehicular edge computing (VEC) technology has the potential to bring revolutionary development to vehicular ad hoc network (VANET). However, the edge computing servers (ECSs) are subjected to a variety of security threats. One of the most dangerous types of security attacks is the Sybil attack, which can create fabricated virtual vehicles (called Sybil vehicles) to significantly overload ECSs' limited computation resources and thus disrupt legitimate vehicles' edge computing applications. In this paper, we present a novel Sybil attack detection system on ECSs that is based on the design of a credibility enhanced temporal graph convolutional network. Our approach can identify the malicious vehicles in a dynamic traffic environment while preserving the legitimate vehicles' privacy, particularly their local position information. We evaluate our proposed approach in the SUMO simulator. The results demonstrate that our proposed detection system can accurately identify most Sybil vehicles while maintaining a low error rate.
2022-03-22
Meng, Yu, Liangliang, Zhu, Yao, Rao, Yongxian, Yi, Jiaji, Liu.  2021.  Research on Fast Encryption Method for Smart Energy Management System in Smart Gird. 2021 International Conference on Communications, Information System and Computer Engineering (CISCE). :76—80.
Smart energy management system in smart grid carries a large number of sensitive data, which needs encryption algorithm to ensure the security of system communication. At present, most of the terminal devices of smart grid are embedded devices with limited computing resources, and their communication encryption mostly relies on AES encryption algorithm. It is difficult in key management and key distribution. Therefore, this paper proposes an improved ECC-AES hybrid encryption algorithm. Firstly, ECC algorithm is improved to improve the speed of encryption and decryption, and then the improved ECC algorithm is used as a supplement to AES algorithm. ECC is used to encrypt the AES key, which improves the security of the algorithm. At the same time, the experimental simulation also proves that the improved ECC algorithm has obvious performance improvement in computing time, CPU occupancy and memory usage.
O’Toole, Sean, Sewell, Cameron, Mehrpouyan, Hoda.  2021.  IoT Security and Safety Testing Toolkits for Water Distribution Systems. 2021 8th International Conference on Internet of Things: Systems, Management and Security (IOTSMS). :1—8.

Due to the critical importance of Industrial Control Systems (ICS) to the operations of cities and countries, research into the security of critical infrastructure has become increasingly relevant and necessary. As a component of both the research and application sides of smart city development, accurate and precise modeling, simulation, and verification are key parts of a robust design and development tools that provide critical assistance in the prevention, detection, and recovery from abnormal behavior in the sensors, controllers, and actuators which make up a modern ICS system. However, while these tools have potential, there is currently a need for helper-tools to assist with their setup and configuration, if they are to be utilized widely. Existing state-of-the-art tools are often technically complex and difficult to customize for any given IoT/ICS processes. This is a serious barrier to entry for most technicians, engineers, researchers, and smart city planners, while slowing down the critical aspects of safety and security verification. To remedy this issue, we take a case study of existing simulation toolkits within the field of water management and expand on existing tools and algorithms with simplistic automated retrieval functionality using a much more in-depth and usable customization interface to accelerate simulation scenario design and implementation, allowing for customization of the cyber-physical network infrastructure and cyber attack scenarios. We additionally provide a novel in-tool-assessment of network’s resilience according to graph theory path diversity. Further, we lay out a roadmap for future development and application of the proposed tool, including expansions on resiliency and potential vulnerability model checking, and discuss applications of our work to other fields relevant to the design and operation of smart cities.

2022-03-14
Sun, Xinyi, Gu, Shushi, Zhang, Qinyu, Zhang, Ning, Xiang, Wei.  2021.  Asynchronous Coded Caching Strategy With Nonuniform Demands for IoV Networks. 2021 IEEE/CIC International Conference on Communications in China (ICCC). :352—357.
The Internet of Vehicles (IoV) can offer safe and comfortable driving experiences with the cooperation communications between central servers and cache-enabled road side units (RSUs) as edge severs, which also can provide high-speed, high-quality and high-stability communication access for vehicle users (VUs). However, due to the huge popular traffic volume, the burden of backhaul link will be seriously enlarged, which will greatly degrade the service experience of the IoV. In order to alleviate the backhaul load of IoV network, in this paper, we propose an asynchronous coded caching strategy composed of two phases, i.e., content placement and asynchronous coded transmission. The asynchronous request and request deadline are closely considered to design our asynchronous coded transmission algorithm. Also, we derive the close-form expression of average backhaul load under the nonuniform demands of IoV users. Finally, we formulate an optimization problem of minimizing average backhaul load and obtain the optimized content placement vector. Simulation results verify the feasibility of our proposed strategy under the asynchronous situation.
2022-03-08
R., Nithin Rao, Sharma, Rinki.  2021.  Analysis of Interest and Data Packet Behaviour in Vehicular Named Data Network. 2021 IEEE Madras Section Conference (MASCON). :1–5.
Named Data Network (NDN) is considered to be the future of Internet architecture. The nature of NDN is to disseminate data based on the naming scheme rather than the location of the node. This feature caters to the need of vehicular applications, resulting in Vehicular Named Data Networks (VNDN). Although it is still in the initial stages of research, the collaboration has assured various advantages which attract the researchers to explore the architecture further. VNDN face challenges such as intermittent connectivity, mobility of nodes, design of efficient forwarding and naming schemes, among others. In order to develop effective forwarding strategies, behavior of data and interest packets under various circumstances needs to be studied. In this paper, propagation behavior of data and interest packets is analyzed by considering metrics such as Interest Satisfaction Ratio (ISR), Hop Count Difference (HCD) and Copies of Data Packets Processed (CDPP). These metrics are evaluated under network conditions such as varying network size, node mobility and amount of interest produced by each node. Simulation results show that data packets do not follow the reverse path of interest packets.
Xiaoqian, Xiong.  2021.  A Sensor Fault Diagnosis Algorithm for UAV Based on Neural Network. 2021 International Conference on Intelligent Transportation, Big Data Smart City (ICITBS). :260–265.
To improve the security and reliability of the system in case of sensor failure, a fault diagnosis algorithm based on neural network is proposed to locate the fault quickly and reconstruct the control system in this paper. Firstly, the typical airborne sensors are introduced and their common failure modes are analyzed. Then, a new method of complex feature extraction using wavelet packet is put forward to extract the fault characteristics of UAV sensors. Finally, the observer method based on BP neural network is adopted to train and acquire data offline, and to detect and process single or multiple sensor faults online. Matlab simulation results show that the algorithm has good diagnostic accuracy and strong generalization ability, which also has certain practicability in engineering.
Diao, Weiping.  2021.  Network Security Situation Forecast Model Based on Neural Network Algorithm Development and Verification. 2021 IEEE 4th International Conference on Automation, Electronics and Electrical Engineering (AUTEEE). :462—465.

With the rapid development of Internet scale and technology, people pay more and more attention to network security. At present, the general method in the field of network security is to use NSS(Network Security Situation) to describe the security situation of the target network. Because NSSA (Network Security Situation Awareness) has not formed a unified optimal solution in architecture design and algorithm design, many ideas have been put forward continuously, and there is still a broad research space. In this paper, the improved LSTM(long short-term memory) neural network is used to analyze and process NSS data, and effectively utilize the attack logic contained in sequence data. Build NSSF (Network Security Situation Forecast) framework based on NAWL-ILSTM. The framework is to directly output the quantified NSS change curve after processing the input original security situation data. Modular design and dual discrimination engine reduce the complexity of implementation and improve the stability. Simulation results show that the prediction model not only improves the convergence speed of the prediction model, but also greatly reduces the prediction error of the model.

2022-03-02
Liu, Yongchao, Zhu, Qidan.  2021.  Adaptive Neural Network Asymptotic Tracking for Nonstrict-Feedback Switched Nonlinear Systems. 2021 International Conference on Security, Pattern Analysis, and Cybernetics(SPAC). :25–30.
This paper develops an adaptive neural network (NN) asymptotic tracking control scheme for nonstrict-feedback switched nonlinear systems with unknown nonlinearities. The NNs are used to dispose the unknown nonlinearities. Different from the published results, the asymptotic convergence character is achieved based on the bound estimation method. By combining some smooth functions with the adaptive backstepping scheme, the asymptotic tracking control strategy is presented. It is proved that the fabricated scheme can guarantee that the system output can asymptotically follow the desired signal, and also that all signals of the entire system are bounded. The validity of the devised scheme is evaluated by a simulation example.
Su, Meng-Ying, Che, Wei-Wei, Wang, Zhen-Ling.  2021.  Model-Free Adaptive Security Tracking Control for Networked Control Systems. 2021 IEEE 10th Data Driven Control and Learning Systems Conference (DDCLS). :1475–1480.
The model-free adaptive security tracking control (MFASTC) problem of nonlinear networked control systems is explored in this paper with DoS attacks and delays consideration. In order to alleviate the impact of DoS attack and RTT delays on NCSs performance, an attack compensation mechanism and a networked predictive-based delay compensation mechanism are designed, respectively. The data-based designed method need not the dynamic and structure of the system, The MFASTC algorithm is proposed to ensure the output tracking error being bounded in the mean-square sense. Finally, an example is given to illustrate the effectiveness of the new algorithm by a comparison.
2022-03-01
Mohammed, Khalid Ayoub, Abdelgader, Abdeldime M.S., Peng, Chen.  2021.  Design of a Fully Automated Adaptive Quantization Technique for Vehicular Communication System Security. 2020 International Conference on Computer, Control, Electrical, and Electronics Engineering (ICCCEEE). :1–6.
Recently, vehicular communications have been the focus of industry, research and development fields. There are many benefits of vehicular communications. It improves traffic management and put derivers in better control of their vehicles. Privacy and security protection are collective accountability in which all parties need to actively engage and collaborate to afford safe and secure communication environments. The primary objective of this paper is to exploit the RSS characteristic of physical layer, in order to generate a secret key that can securely be exchanged between legitimated communication vehicles. In this paper, secret key extraction from wireless channel will be the main focus of the countermeasures against VANET security attacks. The technique produces a high rate of bits stream while drop less amount of information. Information reconciliation is then used to remove dissimilarity of two initially extracted keys, to increase the uncertainty associated to the extracted bits. Five values are defined as quantization thresholds for the captured probes. These values are derived statistically, adaptively and randomly according to the readings obtained from the received signal strength.
Li, Dong, Jiao, Yiwen, Ge, Pengcheng, Sun, Kuanfei, Gao, Zefu, Mao, Feilong.  2021.  Classification Coding and Image Recognition Based on Pulse Neural Network. 2021 IEEE International Conference on Artificial Intelligence and Industrial Design (AIID). :260–265.
Based on the third generation neural network spiking neural network, this paper optimizes and improves a classification and coding method, and proposes an image recognition method. Firstly, the read image is converted into a spike sequence, and then the spike sequence is encoded in groups and sent to the neurons in the spike neural network. After learning and training for many times, the quantization standard code is obtained. In this process, the spike sequence transformation matrix and dynamic weight matrix are obtained, and the unclassified data are output through the same matrix for image recognition and classification. Simulation results show that the above methods can get correct coding and preliminary recognition classification, and the spiking neural network can be applied.
Liu, Jinghua, Chen, Pingping, Chen, Feng.  2021.  Performance of Deep Learning for Multiple Antennas Physical Layer Network Coding. 2021 15th International Symposium on Medical Information and Communication Technology (ISMICT). :179–183.
In this paper, we propose a deep learning based detection for multiple input multiple output (MIMO) physical-layer network coding (DeepPNC) over two way relay channels (TWRC). In MIMO-PNC, the relay node receives the signals superimposed from the two end nodes. The relay node aims to obtain the network-coded (NC) form of the two end nodes' signals. By training suitable deep neural networks (DNNs) with a limited set of training samples. DeepPNC can extract the NC symbols from the superimposed signals received while the output of each layer in DNNs converges. Compared with the traditional detection algorithms, DeepPNC has higher mapping accuracy and does not require channel information. The simulation results show that the DNNs based DeepPNC can achieve significant gain over the DeepNC scheme and the other traditional schemes, especially when the channel matrix changes unexpectedly.
Chen, Xuejun, Dong, Ping, Zhang, Yuyang, Qiao, Wenxuan, Yin, Chenyang.  2021.  Design of Adaptive Redundant Coding Concurrent Multipath Transmission Scheme in High-speed Mobile Environment. 2021 IEEE 5th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC). 5:2176–2179.
As we all know, network coding can significantly improve the throughput and reliability of wireless networks. However, in the high-speed mobile environment, the packet loss rate of different wireless links may vary greatly due to the time-varying network state, which makes the adjustment of network coding redundancy very important. Because the network coding redundancy is too large, it will lead to excessive overhead and reduce the effective throughput. If the network coding redundancy is too small, it will lead to insufficient decoding, which will also reduce the effective throughput. In the design of multi-path transmission scheduling scheme, we introduce adaptive redundancy network coding scheme. By using multiple links to aggregate network bandwidth, we choose appropriate different coding redundancy for different links to resist the performance loss caused by link packet loss. The simulation results show that when the link packet loss rate is greatly different, the mechanism can not only ensure the transmission reliability, but also greatly reduce the total network redundancy to improve the network throughput very effectively.
Bartz, Hannes, Puchinger, Sven.  2021.  Decoding of Interleaved Linearized Reed-Solomon Codes with Applications to Network Coding. 2021 IEEE International Symposium on Information Theory (ISIT). :160–165.
Recently, Martínez-Peñas and Kschischang (IEEE Trans. Inf. Theory, 2019) showed that lifted linearized Reed-Solomon codes are suitable codes for error control in multishot network coding. We show how to construct and decode lifted interleaved linearized Reed-Solomon codes. Compared to the construction by Martínez-Peñas-Kschischang, interleaving allows to increase the decoding region significantly (especially w.r.t. the number of insertions) and decreases the overhead due to the lifting (i.e., increases the code rate), at the cost of an increased packet size. The proposed decoder is a list decoder that can also be interpreted as a probabilistic unique decoder. Although our best upper bound on the list size is exponential, we present a heuristic argument and simulation results that indicate that the list size is in fact one for most channel realizations up to the maximal decoding radius.
Jingyi, Wu, Xusheng, Gan, Jieli, Huang, Shenghou, Li.  2021.  ELM Network Intrusion Detection Model Based on SLPP Feature Extraction. 2021 IEEE International Conference on Power, Intelligent Computing and Systems (ICPICS). :46–49.
To improve the safety precaution level of network system, a combined network intrusion detection method is proposed based on Supervised Locality Preserving Projections (SLPP) feature extraction and Extreme Learning Machine (ELM). In this method, the feature extraction capability of SLPP is first used to reduce the dimensionality of the original network connection and system audit data, and get a feature set, then, based on this, the advantages of ELM in pattern recognition is adopted to build a network intrusion detection model for detecting and determining intrusion behavior. Simulation results show that, under the same experiment conditions, compared with traditional neural networks and support vector machines, the proposed method has more advantages in training efficiency and generalization performance.
2022-02-24
Kroeger, Trevor, Cheng, Wei, Guilley, Sylvain, Danger, Jean-Luc, Karimi, Nazhmeh.  2021.  Making Obfuscated PUFs Secure Against Power Side-Channel Based Modeling Attacks. 2021 Design, Automation Test in Europe Conference Exhibition (DATE). :1000–1005.
To enhance the security of digital circuits, there is often a desire to dynamically generate, rather than statically store, random values used for identification and authentication purposes. Physically Unclonable Functions (PUFs) provide the means to realize this feature in an efficient and reliable way by utilizing commonly overlooked process variations that unintentionally occur during the manufacturing of integrated circuits (ICs) due to the imperfection of fabrication process. When given a challenge, PUFs produce a unique response. However, PUFs have been found to be vulnerable to modeling attacks where by using a set of collected challenge response pairs (CRPs) and training a machine learning model, the response can be predicted for unseen challenges. To combat this vulnerability, researchers have proposed techniques such as Challenge Obfuscation. However, as shown in this paper, this technique can be compromised via modeling the PUF's power side-channel. We first show the vulnerability of a state-of-the-art Challenge Obfuscated PUF (CO-PUF) against power analysis attacks by presenting our attack results on the targeted CO-PUF. Then we propose two countermeasures, as well as their hybrid version, that when applied to the CO-PUFs make them resilient against power side-channel based modeling attacks. We also provide some insights on the proper design metrics required to be taken when implementing these mitigations. Our simulation results show the high success of our attack in compromising the original Challenge Obfuscated PUFs (success rate textgreater 98%) as well as the significant improvement on resilience of the obfuscated PUFs against power side-channel based modeling when equipped with our countermeasures.
2022-02-22
Barker, John, Hamada, Amal, Azab, Mohamed.  2021.  Lightweight Proactive Moving-target Defense for Secure Data Exchange in IoT Networks. 2021 IEEE 12th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON). :0317—0322.
Internet of Things (IoT) revolutionizes cutting-edge technologies by enabling smart sensing, and actuation of the physical world. IoT enables cooperation between numerous heterogeneous smart devices to exchange and aggregate data from the surrounding environment through the internet. Recently, the range of IoT technology could be utilized in the real world by the rapid spread of sensor devices. These capabilities open the door for vital challenges. Security is the major challenge that faces the IoT networks. Traditional solutions cannot tackle smart and powerful attackers. Moving Target Defense (MTD) deploys mechanisms and strategies that increase attackers' uncertainty and frustrate their attempt to eavesdrop the target to be protected. In addition, Steganography is the practice of concealing a message within another message. For security proposes, Steganography is used to hide significant data within any transmitted messages, such as images, videos, and text files. This paper presents Stegano-MTD framework that enables combination between MTD mechanisms with steganography. This combination offers a lightweight solution that can be implemented on the IoT network. Stegano-MTD slices the message into small labeled chunks and sends them randomly through the network's nodes. Steganography is used for hide the key file that used to reconstruct the original data. Simulation results show the effectiveness of the presented solution.
Qiu, Yihao, Wu, Jun, Mumtaz, Shahid, Li, Jianhua, Al-Dulaimi, Anwer, Rodrigues, Joel J. P. C..  2021.  MT-MTD: Muti-Training based Moving Target Defense Trojaning Attack in Edged-AI network. ICC 2021 - IEEE International Conference on Communications. :1—6.
The evolution of deep learning has promoted the popularization of smart devices. However, due to the insufficient development of computing hardware, the ability to conduct local training on smart devices is greatly restricted, and it is usually necessary to deploy ready-made models. This opacity makes smart devices vulnerable to deep learning backdoor attacks. Some existing countermeasures against backdoor attacks are based on the attacker’s ignorance of defense. Once the attacker knows the defense mechanism, he can easily overturn it. In this paper, we propose a Trojaning attack defense framework based on moving target defense(MTD) strategy. According to the analysis of attack-defense game types and confrontation process, the moving target defense model based on signaling game was constructed. The simulation results show that in most cases, our technology can greatly increase the attack cost of the attacker, thereby ensuring the availability of Deep Neural Networks(DNN) and protecting it from Trojaning attacks.
2022-02-08
Arsalaan, Ameer Shakayb, Nguyen, Hung, Fida, Mahrukh.  2021.  Impact of Bushfire Dynamics on the Performance of MANETs. 2021 16th Annual Conference on Wireless On-demand Network Systems and Services Conference (WONS). :1–4.
In emergency situations like recent Australian bushfires, it is crucial for civilians and firefighters to receive critical information such as escape routes and safe sheltering points with guarantees on information quality attributes. Mobile Ad-hoc Networks (MANETs) can provide communications in bushfire when fixed infrastructure is destroyed and not available. Current MANET solutions, however, are mostly tested under static bushfire scenario. In this work, we investigate the impact of a realistic dynamic bushfire in a dry eucalypt forest with a shrubby understory, on the performance of data delivery solutions in a MANET. Simulation results show a significant degradation in the performance of state-of-the-art MANET quality of information solution. Other than frequent source handovers and reduced user usability, packet arrival latency increases by more than double in the 1st quartile with a median drop of 74.5 % in the overall packet delivery ratio. It is therefore crucial for MANET solutions to be thoroughly evaluated under realistic dynamic bushfire scenarios.
2022-02-07
Yu, Panlong, Zhao, Xu, Liu, Qiao, Qiu, Sihai, Wu, Yucheng.  2021.  Resource Allocation Scheme for Secure Transmission in D2D Underlay Communications. 2021 IEEE 21st International Conference on Communication Technology (ICCT). :965–970.
Device-to-Device (D2D) communications play a key role in the mobile communication networks. In spite of its benefits, new system architecture expose the D2D communications to unique security threats. Due to D2D users share the same licensed spectrum resources with the cellular users, both the cellular user and D2D receiver can eavesdrop each other's critical information. Thus, to maximize the secrecy rate from the perspective of physical layer security, the letter proposed a optimal power allocation scheme and subsequently to optimization problem of resource allocation is systematically investigated. The efficacy of the proposed scheme is assessed numerically.
2022-02-04
Belkaaloul, Abdallah, Bensaber, Boucif Amar.  2021.  Anonymous Authentication Protocol for Efficient Communications in Vehicle to Grid Networks. 2021 IEEE Symposium on Computers and Communications (ISCC). :1–5.
Rapid multiplication of electric vehicles requires the implementation of a new infrastructure to sustain their operations. For instance, charging these vehicles batteries necessitates a connection that allows information exchanges between vehicle and infrastructure. These exchanges are managed by a network called V2G (Vehicle to Grid), which is governed by the ISO 15118 standard. This last recommends the use of X.509 hierarchical PKI to protect the network communications against attacks. Although several authors have identified and criticized the shortcomings of this proposal, but no one provides a robust and effective remedial solution to alleviate them. This paper proposes an efficient protocol that addresses these shortcomings while respecting the concepts of the ISO 15118 standard. It fulfills the most important security requirements i.e. confidentiality, anonymity, integrity and non-repudiation. The validity and effectiveness of the proposed protocol were confirmed using the formal modeling tool Tamarin Prover and the RISE- V2G simulator.
Liu, Zepeng, Xiao, Shiwu, Dong, Huanyu.  2021.  Identification of Transformer Magnetizing Inrush Current Based on Empirical Mode Decomposition. 2021 IEEE 4th International Electrical and Energy Conference (CIEEC). :1–6.
Aiming at the fact that the existing feature quantities cannot well identify the magnetizing inrush current during remanence and bias and the huge number of feature quantities, a new identification method using empirical mode decomposition energy index and artificial intelligence algorithm is proposed in 'this paper. Decomposition and denoising are realized through empirical mode decomposition, and then the corresponding energy index is obtained for the waveform of each inherent modal component and simplified by the mean impact value method. Finally, the accuracy of prediction using artificial intelligence algorithm is close to 100%. This reflects the practicality of the method proposed in 'this article.
2022-02-03
Xu, Chengtao, Song, Houbing.  2021.  Mixed Initiative Balance of Human-Swarm Teaming in Surveillance via Reinforcement learning. 2021 IEEE/AIAA 40th Digital Avionics Systems Conference (DASC). :1—10.
Human-machine teaming (HMT) operates in a context defined by the mission. Varying from the complexity and disturbance in the cooperation between humans and machines, a single machine has difficulty handling work with humans in the scales of efficiency and workload. Swarm of machines provides a more feasible solution in such a mission. Human-swarm teaming (HST) extends the concept of HMT in the mission, such as persistent surveillance, search-and-rescue, warfare. Bringing the concept of HST faces several scientific challenges. For example, the strategies of allocation on the high-level decision making. Here, human usually plays the supervisory or decision making role. Performance of such fixed structure of HST in actual mission operation could be affected by the supervisor’s status from many aspects, which could be considered in three general parts: workload, situational awareness, and trust towards the robot swarm teammate and mission performance. Besides, the complexity of a single human operator in accessing multiple machine agents increases the work burdens. An interface between swarm teammates and human operators to simplify the interaction process is desired in the HST.In this paper, instead of purely considering the workload of human teammates, we propose the computational model of human swarm interaction (HSI) in the simulated map surveillance mission. UAV swarm and human supervisor are both assigned in searching a predefined area of interest (AOI). The workload allocation of map monitoring is adjusted based on the status of the human worker and swarm teammate. Workload, situation awareness ability, trust are formulated as independent models, which affect each other. A communication-aware UAV swarm persistent surveillance algorithm is assigned in the swarm autonomy portion. With the different surveillance task loads, the swarm agent’s thrust parameter adjusts the autonomy level to fit the human operator’s needs. Reinforcement learning is applied in seeking the relative balance of workload in both human and swarm sides. Metrics such as mission accomplishment rate, human supervisor performance, mission performance of UAV swarm are evaluated in the end. The simulation results show that the algorithm could learn the human-machine trust interaction to seek the workload balance to reach better mission execution performance. This work inspires us to leverage a more comprehensive HST model in more practical HMT application scenarios.