Visible to the public Biblio

Found 288 results

Filters: Keyword is simulation  [Clear All Filters]
2022-01-31
Zulfa, Mulki Indana, Hartanto, Rudy, Permanasari, Adhistya Erna.  2021.  Performance Comparison of Swarm Intelligence Algorithms for Web Caching Strategy. 2021 IEEE International Conference on Communication, Networks and Satellite (COMNETSAT). :45—51.
Web caching is one strategy that can be used to speed up response times by storing frequently accessed data in the cache server. Given the cache server limited capacity, it is necessary to determine the priority of cached data that can enter the cache server. This study simulated cached data prioritization based on an objective function as a characteristic of problem-solving using an optimization approach. The objective function of web caching is formulated based on the variable data size, count access, and frequency-time access. Then we use the knapsack problem method to find the optimal solution. The Simulations run three swarm intelligence algorithms Ant Colony Optimization (ACO), Genetic Algorithm (GA), and Binary Particle Swarm Optimization (BPSO), divided into several scenarios. The simulation results show that the GA algorithm relatively stable and fast to convergence. The ACO algorithm has the advantage of a non-random initial solution but has followed the pheromone trail. The BPSO algorithm is the fastest, but the resulting solution quality is not as good as ACO and GA.
Zulfa, Mulki Indana, Hartanto, Rudy, Permanasari, Adhistya Erna, Ali, Waleed.  2021.  Web Caching Strategy Optimization Based on Ant Colony Optimization and Genetic Algorithm. 2021 International Seminar on Intelligent Technology and Its Applications (ISITIA). :75—81.
Web caching is a strategy that can be used to speed up website access on the client-side. This strategy is implemented by storing as many popular web objects as possible on the cache server. All web objects stored on a cache server are called cached data. Requests for cached web data on the cache server are much faster than requests directly to the origin server. Not all web objects can fit on the cache server due to their limited capacity. Therefore, optimizing cached data in a web caching strategy will determine which web objects can enter the cache server to have maximum profit. This paper simulates a web caching strategy optimization with a knapsack problem approach using the Ant Colony optimization (ACO), Genetic Algorithm (GA), and a combination of the two. Knapsack profit is seen from the number of web objects that can be entered into the cache server but with the minimum objective function value. The simulation results show that the combination of ACO and GA is faster to produce an optimal solution and is not easily trapped by the local optimum.
Xiong, Jiaqi, Zeng, Xin, Xue, Xiaoping, Ma, Jingxiao.  2021.  An Efficient Group Secret Key Generation Scheme for Wireless Sensor Network. 2021 International Conference on Wireless Communications and Smart Grid (ICWCSG). :302–308.
The Internet of Things technology is one of the important directions of Smart Grid research, involving many wireless sensors and communication facilities, and has high requirements for security. The physical layer security technology can effectively solve the security problems under wireless communication. As the most common application scenario of wireless communication is multi-node wireless network communication, group secret key (GSK) based on physical layer security and information theory security is gradually attracting investigator’s interest. In this paper, a novel physical layer GSK generation scheme based on code-domain exchange of channel information in mesh network is proposed. Instead of traditional side-information exchange in symbol-domain, error-correcting code is applied to finish information exchange and reconciliation simultaneously in code-domain. Each node processes the known channel bit sequence and then encodes it to generate a check sequence. After broadcasting the check bit sequence to other nodes, each node decodes the received check bit sequences to obtained the unknown channel information. The simulation results show that the scheme can effectively reduce the times of information exchanges while keeping a good performance including low bit error rate and low block error rate.
2022-01-11
Hu, Lei, Li, Guyue, Luo, Hongyi, Hu, Aiqun.  2021.  On the RIS Manipulating Attack and Its Countermeasures in Physical-Layer Key Generation. 2021 IEEE 94th Vehicular Technology Conference (VTC2021-Fall). :1–5.
Reconfigurable Intelligent Surface (RIS) is a new paradigm that enables the reconfiguration of the wireless environment. Based on this feature, RIS can be employed to facilitate Physical-layer Key Generation (PKG). However, this technique could also be exploited by the attacker to destroy the key generation process via manipulating the channel features at the legitimate user side. Specifically, this paper proposes a new RIS-assisted Manipulating attack (RISM) that reduces the wireless channel reciprocity by rapidly changing the RIS reflection coefficient in the uplink and downlink channel probing step in orthogonal frequency division multiplexing (OFDM) systems. The vulnerability of traditional key generation technology based on channel frequency response (CFR) under this attack is analyzed. Then, we propose a slewing rate detection method based on path separation. The attacked path is removed from the time domain and a flexible quantization method is employed to maximize the Key Generation Rate (KGR). The simulation results show that under RISM attack, when the ratio of the attack path variance to the total path variance is 0.17, the Bit Disagreement Rate (BDR) of the CFR-based method is greater than 0.25, and the KGR is close to zero. In addition, the proposed detection method can successfully detect the attacked path for SNR above 0 dB in the case of 16 rounds of probing and the KGR is 35 bits/channel use at 23.04MHz bandwidth.
2022-01-10
Xu, Baoyue, Du, Dajun, Zhang, Changda, Zhang, Jin.  2021.  A Honeypot-based Attack Detection Method for Networked Inverted Pendulum System. 2021 40th Chinese Control Conference (CCC). :8645–8650.
The data transmitted via the network may be vulnerable to cyber attacks in networked inverted pendulum system (NIPS), how to detect cyber attacks is a challenging issue. To solve this problem, this paper investigates a honeypot-based attack detection method for NIPS. Firstly, honeypot for NIPS attack detection (namely NipsPot) is constructed by deceptive environment module of a virtual closed-loop control system, and the stealthiness of typical covert attacks is analysed. Secondly, attack data is collected by NipsPot, which is used to train supported vector machine (SVM) model for attack detection. Finally, simulation results demonstrate that NipsPot-based attack detector can achieve the accuracy rate of 99.78%, the precision rate of 98.75%, and the recall rate of 100%.
Shirmarz, Alireza, Ghaffari, Ali, Mohammadi, Ramin, Akleylek, Sedat.  2021.  DDOS Attack Detection Accuracy Improvement in Software Defined Network (SDN) Using Ensemble Classification. 2021 International Conference on Information Security and Cryptology (ISCTURKEY). :111–115.
Nowadays, Denial of Service (DOS) is a significant cyberattack that can happen on the Internet. This attack can be taken place with more than one attacker that in this case called Distributed Denial of Service (DDOS). The attackers endeavour to make the resources (server & bandwidth) unavailable to legitimate traffic by overwhelming resources with malicious traffic. An appropriate security module is needed to discriminate the malicious flows with high accuracy to prevent the failure resulting from a DDOS attack. In this paper, a DDoS attack discriminator will be designed for Software Defined Network (SDN) architecture so that it can be deployed in the POX controller. The simulation results present that the proposed model can achieve an accuracy of about 99.4%which shows an outstanding percentage of improvement compared with Decision Tree (DT), K-Nearest Neighbour (KNN), Support Vector Machine (SVM) approaches.
Khan, Ausaf Umar, Chawhan, Manish Devendra, Mushrif, Milind Madhukar, Neole, Bhumika.  2021.  Performance Analysis of Adhoc On-demand Distance Vector Protocol under the influence of Black-Hole, Gray-Hole and Worm-Hole Attacks in Mobile Adhoc Network. 2021 5th International Conference on Intelligent Computing and Control Systems (ICICCS). :238–243.
Adhoc On-demand Distance Vector (AODV) is the well-known reactive routing protocol of Mobile Adhoc Network (MANET). Absence of security mechanism in AODV disturbs the routing because of misbehavior of attack and hence, degrades MANET's performance. Secure and efficient routing is a need of various commercial and non-commercial applications of MANET including military and war, disaster and earthquake, and riot control. This paper presents a design of important network layer attacks include black-hole (BH), gray-hole (GH) and worm-hole (WH) attacks. The performance analysis of AODV protocol is carried out under the influence of each designed attack by using the network simulator, NetSim. Simulation results show that, the network layer attacks affect packet delivery ability of AODV protocol with low energy consumption and in short time. Design of attacks helps to understand attack's behavior and hence, to develop security mechanism in AODV.
2021-12-22
Kim, Jiha, Park, Hyunhee.  2021.  OA-GAN: Overfitting Avoidance Method of GAN Oversampling Based on xAI. 2021 Twelfth International Conference on Ubiquitous and Future Networks (ICUFN). :394–398.
The most representative method of deep learning is data-driven learning. These methods are often data-dependent, and lack of data leads to poor learning. There is a GAN method that creates a likely image as a way to solve a problem that lacks data. The GAN determines that the discriminator is fake/real with respect to the image created so that the generator learns. However, overfitting problems when the discriminator becomes overly dependent on the learning data. In this paper, we explain overfitting problem when the discriminator decides to fake/real using xAI. Depending on the area of the described image, it is possible to limit the learning of the discriminator to avoid overfitting. By doing so, the generator can produce similar but more diverse images.
2021-12-20
Wang, Libin, Wang, Huanqing, Liu, Peter Xiaoping.  2021.  Observer-Based Fuzzy Adaptive Command Filtering Finite-Time Control of Stochastic Nonlinear Systems. 2021 International Conference on Security, Pattern Analysis, and Cybernetics(SPAC). :1–6.
The output feedback problem of finite-time command filtering for nonlinear systems with random disturbance is addressed in this paper. This is the first time that command filtering and output feedback are integrated so that a nonlinear system with random disturbance converge rapidly in finite time. The uncertain functions and unmeasured states are estimated by the fuzzy logic system (FLS) and nonlinear state observer, respectively. Based on the adaptive framework, command filtering technology is applied to mitigate the problem of ``term explosion'' inherent in traditional methods, and error compensation mechanism is considered to improve the control performance of the system. The developed output feedback controller ensures the boundedness of all signals in the stochastic system within a finite time, and the convergence residual can converge to a small region. The validity of this scheme is well verified in a numerical example.
Yang, Wen, Xue, Hong, Hu, Shenglin, Liang, Hongjing.  2021.  Command Filter-Based Adaptive Finite-Time Prescribed Performance Control for Uncertain Nonlinear Systems with Fuzzy Dead-Zone Input. 2021 International Conference on Security, Pattern Analysis, and Cybernetics(SPAC). :555–560.
This paper is concerned with the problem of adaptive finite-time prescribed performance control for a category of uncertain nonlinear systems subject to fuzzy dead-zone input. Via combining the technologies of command filter and backstepping control, the ``singularity'' and the ``explosion of complexity'' issues within controller design procedure are avoided. Moreover, by designing a state observer and utilizing the center-of-gravity theorem, the unmeasured states of system are estimated and the fuzzy issue result from fuzzy dead-zone input is disposed, respectively. Meanwhile, a finite-time fuzzy controller is constructed via combining with finite-time stability criterion, which guarantees all the signals in closed-loop system are convergent and the trajectory of tracking error also strictly evolves within a predefined range in finite time. At last, some simulation results confirm the viability of presented theoretical results.
Liu, Jiawei, Liu, Quanli, Wang, Wei, Wang, Xiao- Lei.  2021.  An Improved MLMS Algorithm with Prediction Error Method for Adaptive Feedback Cancellation. 2021 International Conference on Security, Pattern Analysis, and Cybernetics(SPAC). :397–401.
Adaptive feedback cancellation (AFC) method is widely adopted for the purpose of reducing the adverse effects of acoustic feedback on the sound reinforcement systems. However, since the existence of forward path results in the correlation between the source signal and the feedback signal, the source signal is mistakenly considered as the feedback signal to be eliminated by adaptive filter when it is colored, which leads to a inaccurate prediction of the acoustic feedback signal. In order to solve this problem, prediction error method is introduced in this paper to remove the correlation between the source signal and the feedback signal. Aiming at the dilemma of Modified Least Mean Square (MLMS) algorithm in choosing between prediction speed and prediction accuracy, an improved MLMS algorithm with a variable step-size scheme is proposed. Simulation examples are applied to show that the proposed algorithm can obtain more accurate prediction of acoustic feedback signal in a shorter time than the MLMS algorithm.
Yang, Yuhan, Zhou, Yong, Wang, Ting, Shi, Yuanming.  2021.  Reconfigurable Intelligent Surface Assisted Federated Learning with Privacy Guarantee. 2021 IEEE International Conference on Communications Workshops (ICC Workshops). :1–6.
In this paper, we consider a wireless federated learning (FL) system concerning differential privacy (DP) guarantee, where multiple edge devices collaboratively train a shared model under the coordination of a central base station (BS) through over-the-air computation (AirComp). However, due to the heterogeneity of wireless links, it is difficult to achieve the optimal trade-off between model privacy and accuracy during the FL model aggregation. To address this issue, we propose to utilize the reconfigurable intelligent surface (RIS) technology to mitigate the communication bottleneck in FL by reconfiguring the wireless propagation environment. Specifically, we aim to minimize the model optimality gap while strictly meeting the DP and transmit power constraints. This is achieved by jointly optimizing the device transmit power, artificial noise, and phase shifts at RIS, followed by developing a two-step alternating minimization framework. Simulation results will demonstrate that the proposed RIS-assisted FL model achieves a better trade-off between accuracy and privacy than the benchmarks.
Liu, Jieling, Wang, Zhiliang, Yang, Jiahai, Wang, Bo, He, Lin, Song, Guanglei, Liu, Xinran.  2021.  Deception Maze: A Stackelberg Game-Theoretic Defense Mechanism for Intranet Threats. ICC 2021 - IEEE International Conference on Communications. :1–6.

The intranets in modern organizations are facing severe data breaches and critical resource misuses. By reusing user credentials from compromised systems, Advanced Persistent Threat (APT) attackers can move laterally within the internal network. A promising new approach called deception technology makes the network administrator (i.e., defender) able to deploy decoys to deceive the attacker in the intranet and trap him into a honeypot. Then the defender ought to reasonably allocate decoys to potentially insecure hosts. Unfortunately, existing APT-related defense resource allocation models are infeasible because of the neglect of many realistic factors.In this paper, we make the decoy deployment strategy feasible by proposing a game-theoretic model called the APT Deception Game to describe interactions between the defender and the attacker. More specifically, we decompose the decoy deployment problem into two subproblems and make the problem solvable. Considering the best response of the attacker who is aware of the defender’s deployment strategy, we provide an elitist reservation genetic algorithm to solve this game. Simulation results demonstrate the effectiveness of our deployment strategy compared with other heuristic strategies.

NING, Baifeng, Xiao, Liang.  2021.  Defense Against Advanced Persistent Threats in Smart Grids: A Reinforcement Learning Approach. 2021 40th Chinese Control Conference (CCC). :8598–8603.
In smart girds, supervisory control and data acquisition (SCADA) systems have to protect data from advanced persistent threats (APTs), which exploit vulnerabilities of the power infrastructures to launch stealthy and targeted attacks. In this paper, we propose a reinforcement learning-based APT defense scheme for the control center to choose the detection interval and the number of Central Processing Units (CPUs) allocated to the data concentrators based on the data priority, the size of the collected meter data, the history detection delay, the previous number of allocated CPUs, and the size of the labeled compromised meter data without the knowledge of the attack interval and attack CPU allocation model. The proposed scheme combines deep learning and policy-gradient based actor-critic algorithm to accelerate the optimization speed at the control center, where an actor network uses the softmax distribution to choose the APT defense policy and the critic network updates the actor network weights to improve the computational performance. The advantage function is applied to reduce the variance of the policy gradient. Simulation results show that our proposed scheme has a performance gain over the benchmarks in terms of the detection delay, data protection level, and utility.
2021-11-30
Li, Gangqiang, Wu, Sissi Xiaoxiao, Zhang, Shengli, Li, Qiang.  2020.  Detect Insider Attacks Using CNN in Decentralized Optimization. ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). :8758–8762.
This paper studies the security issue of a gossip-based distributed projected gradient (DPG) algorithm, when it is applied for solving a decentralized multi-agent optimization. It is known that the gossip-based DPG algorithm is vulnerable to insider attacks because each agent locally estimates its (sub)gradient without any supervision. This work leverages the convolutional neural network (CNN) to perform the detection and localization of the insider attackers. Compared to the previous work, CNN can learn appropriate decision functions from the original state information without preprocessing through artificially designed rules, thereby alleviating the dependence on complex pre-designed models. Simulation results demonstrate that the proposed CNN-based approach can effectively improve the performance of detecting and localizing malicious agents, as compared with the conventional pre-designed score-based model.
2021-11-29
ZHANG, Yi-jun.  2021.  A Longitudinal-Bending Fluid-Cavity Coupled Broadband Underwater Acoustic Transducer. 2020 15th Symposium on Piezoelectrcity, Acoustic Waves and Device Applications (SPAWDA). :390–393.
Acoustic tomography experiments for ocean observation require low-frequency, broadband, high power, small size underwater acoustic transducer, but there are contradictions between the performance of the transducer, therefore a longitudinal-bending fluid-cavity coupled broadband underwater acoustic transducer is presented. The difference between the transducer and the traditional JH transducer is that the opening position of the Helmholtz resonant cavity is arranged between the radiation cover plate and the cylindrical cavity. Based on the optimization results of the finite element software ANSYS produced a transducer test prototype. The test results show that the simulation results and experimental results are basically consistent, and the transmitting voltage response can reach 136dB, the transmitting voltage response fluctuation shall no more than 6dB through the range of 700-1200Hz in the horizontal direction, verified the longitudinal-bending mode and the fluid-cavity mode of the transducer are well coupled, and the transducer is an ideal low-frequency, broadband, high power, small size underwater acoustic transducer.
2021-11-08
Lin, Xinyi, Hou, Gonghua, Lin, Wei, Chen, Kangjie.  2020.  Quantum Key Distribution in Partially-Trusted QKD Ring Networks. 2020 IEEE 3rd International Conference on Information Systems and Computer Aided Education (ICISCAE). :33–36.
The long-distance transmission of quantum secret key is a challenge for quantum communication. As far as the current relay technology is concerned, the trusted relay technology is a more practical scheme. However, the trusted relay technology requires every relay node to be trusted, but in practical applications, the security of some relay nodes cannot be guaranteed. How to overcome the security problem of trusted relay technology and realize the security key distribution of remote quantum network has become a new problem. Therefore, in this paper, a method of quantum key distribution in ring network is proposed under the condition of the coexistence of trusted and untrusted repeaters, and proposes a partially-trusted based routing algorithm (PT-RA). This scheme effectively solves the security problem of key distribution in ring backbone network. And simulation results show that PT-RA can significantly improve key distribution success rate compared with the original trusted relay technology.
Zhu, Huifeng, Guo, Xiaolong, Jin, Yier, Zhang, Xuan.  2020.  PowerScout: A Security-Oriented Power Delivery Network Modeling Framework for Cross-Domain Side-Channel Analysis. 2020 Asian Hardware Oriented Security and Trust Symposium (AsianHOST). :1–6.
The growing complexity of modern electronic systems often leads to the design of more sophisticated power delivery networks (PDNs). Similar to other system-level shared resources, the on-board PDN unintentionally introduces side channels across design layers and voltage domains, despite the fact that PDNs are not part of the functional design. Recent work have demonstrated that exploitation of the side channel can compromise the system security (i.e. information leakage and fault injection). In this work, we systematically investigate the PDN-based side channel as well as the countermeasures. To facilitate our goal, we develop PowerScout, a security-oriented PDN simulation framework that unifies the modeling of different PDN-based side-channel attacks. PowerScout performs fast nodal analysis of complex PDNs at the system level to quantitatively evaluate the severity of side-channel vulnerabilities. With the support of PowerScout, for the first time, we validate PDN side-channel attacks in literature through simulation results. Further, we are able to quantitatively measure the security impact of PDN parameters and configurations. For example, towards information leakage, removing near-chip capacitors can increase intra-chip information leakage by a maximum of 23.23dB at mid-frequency and inter-chip leakage by an average of 31.68dB at mid- and high-frequencies. Similarly, the optimal toggling frequency and duty cycle are derived to achieve fault injection attacks with higher success rate and more precise control.
Zhu, Tian, Tong, Fei.  2020.  A Cluster-Based Cooperative Jamming Scheme for Secure Communication in Wireless Sensor Network. 2020 IEEE 92nd Vehicular Technology Conference (VTC2020-Fall). :1–5.
The environment of wireless sensor networks (WSNs) makes the communication not only have the broadcast nature of wireless transmission, but also be limited to the low power and communication capability of sensor equipment. Both of them make it hard to ensure the confidentiality of communication. In this paper, we propose a cluster-based cooperative jamming scheme based on physical layer security for WSNs. The mathematical principle of the scheme is based on the design principle of code division multiple access. By using the orthogonality of orthogonal vectors, the legitimate receiver can effectively eliminate the noise, which is generated by the cooperative jamming nodes to disturb the eavesdropper. This scheme enables the legitimate receiver to ensure a strong communication confidentiality even if there is no location or channel advantage comparing with eavesdroppers. Through extensive simulations, the security performance of the proposed scheme is investigated in terms of secrecy rate.
2021-09-30
Zhang, Qingqing, Tang, Hongbo, You, Wei, Li, Yingle.  2020.  A Method for Constructing Heterogeneous Entities Pool in NFV Security Architecture Based on Mimic Defense. 2020 IEEE 6th International Conference on Computer and Communications (ICCC). :1029–1033.
The characteristics of resource sharing and centralized deployment of network function virtualization (NFV) make the physical boundary under the traditional closed management mode disappear, bringing many new security threats to the network. To improve the security of the NFV network, this paper proposes a network function virtualization security architecture based on mimic defense. At the same time, to ensure the differences between heterogeneous entities, a genetic algorithm-based heterogeneous entities pool construction method is proposed. Simulation results show that this method can effectively guarantee the difference between heterogeneous entities and increase the difficulty of attackers.
Zuo, Xinbin, Pang, Xue, Zhang, Pengping, Zhang, Junsan, Dong, Tao, Zhang, Peiying.  2020.  A Security-Aware Software-Defined IoT Network Architecture. 2020 IEEE Computing, Communications and IoT Applications (ComComAp). :1–5.
With the improvement of people's living standards, more and more network users access the network, including a large number of infrastructure, these devices constitute the Internet of things(IoT). With the rapid expansion of devices in the IoT, the data transmission between the IoT has become more complex, and the security issues are facing greater challenges. SDN as a mature network architecture, its security has been affirmed by the industry, it separates the data layer from the control layer, thus greatly improving the security of the network. In this paper, we apply the SDN to the IoT, and propose a IoT network architecture based on SDN. In this architecture, we not only make use of the security features of SDN, but also deploy different security modules in each layer of SDN to integrate, analyze and plan various data through the IoT, which undoubtedly improves the security performance of the network. In the end, we give a comprehensive introduction to the system and verify its performance.
2021-08-31
Nonprivun, Choktawee, Plangklang, Boonyang.  2020.  Study and Analysis of Flux Linkage on 12/8 pole Doubly Salient Permanent Magnet Machine in Square Envelope. 2020 International Conference on Power, Energy and Innovations (ICPEI). :141–144.
This paper presents a study and analysis of flux linkage performance on 12/8 pole doubly salient permanent magnet machine in square envelope conventional. Analyzed model was using a finite element method. The investigated model was constructed by changing the size of the structure as the main parameters of the speed 500 rpm, PM coercivity 910 kA/m, PM remanence 1.2 T, copper loss 30 W, turns per coil 45, and stator side length 100 mm. The study and analysis of flux linkage, induced voltage, and torque are also included in this paper.
2021-08-02
Sharma, Nisha, Sharma, Durga Prasad, Sharma, Manish.  2020.  Wormhole Formation and Simulation in Dynamic Source Routing Protocol using NS3. 2020 9th International Conference System Modeling and Advancement in Research Trends (SMART). :318–322.
Mobile Ad hoc networks (MANET) are becoming extremely popular because of the expedient features that also make them more exposed to various kinds of security attacks. The Wormhole attack is considered to be the most unsafe attack due to its unusual pattern of tunnel creation between two malevolent nodes. In it, one malevolent node attracts all the traffic towards the tunnel and forwards it to another malevolent node at the other end of the tunnel and replays them again in the network. Once the Wormhole tunnel is created it can launch different kind of other attacks such as routing attack, packet dropping, spoofing etc. In past few years a lot of research is done for securing routing protocols. Dynamic Source Routing (DSR) protocol is considered foremost MANET routing protocols. In this paper we are forming the wormhole tunnel in which malevolent nodes use different interfaces for communication in DSR protocol. NS3 simulator is being used for the analysis of the DSR routing protocol under the wormhole attack. This paper provides better understanding of the wormhole attack in DSR protocol which can benefit further research.
2021-07-08
Su, Yishan, Zhang, Ting, Jin, Zhigang, Guo, Lei.  2020.  An Anti-Attack Trust Mechanism Based on Collaborative Spectrum Sensing for Underwater Acoustic Sensor Networks. Global Oceans 2020: Singapore – U.S. Gulf Coast. :1—5.
The main method for long-distance underwater communication is underwater acoustic communication(UAC). The bandwidth of UAC channel is narrow and the frequency band resources are scarce. Therefore, it is important to improve the frequency band utilization of UAC system. Cognitive underwater acoustic (CUA) technology is an important method. CUA network can share spectrum resources with the primary network. Spectrum sensing (SS) technology is the premise of realizing CUA. Therefore, improving the accuracy of spectral sensing is the main purpose of this paper. However, the realization of underwater SS technology still faces many difficulties. First, underwater energy supplies are scarce, making it difficult to apply complex algorithms. Second, and more seriously, CUA network can sometimes be attacked and exploited by hostile forces, which will not only lead to data leakage, but also greatly affect the accuracy of SS. In order to improve the utilization of underwater spectrum and avoid attack, an underwater spectrum sensing model based on the two-threshold energy detection method and K of M fusion decision method is established. Then, the trust mechanism based on beta function and XOR operation are proposed to combat individual attack and multi-user joint attack (MUJA) respectively. Finally, simulation result shows the effectiveness of these methods.
Khalid, Muhammad, Zhao, Ruiqin, Wang, Xin.  2020.  Node Authentication in Underwater Acoustic Sensor Networks Using Time-Reversal. Global Oceans 2020: Singapore – U.S. Gulf Coast. :1—4.
Physical layer authentication scheme for node authentication using the time-reversal (TR) process and the location-specific key feature of the channel impulse response (CIR) in an underwater time-varying multipath environment is proposed. TR is a well-known signal focusing technique in signal processing; this focusing effect is used by the database maintaining node to authenticate the sensor node by convolving the estimated CIR from a probe signal with its database of CIRs. Maximum time-reversal resonating strength (MTRRS) is calculated to make an authentication decision. This work considers a static underwater acoustic sensor network (UASN) under the “Alice- Bob-Eve” scenario. The performance of the proposed scheme is expressed by the Probability of Detection (PD) and the Probability of False Alarm (PFA).