Visible to the public Biblio

Found 288 results

Filters: Keyword is simulation  [Clear All Filters]
2023-09-08
Li, Leixiao, Xiong, Xiao, Gao, Haoyu, Zheng, Yue, Niu, Tieming, Du, Jinze.  2022.  Blockchain-based trust evaluation mechanism for Internet of Vehicles. 2022 IEEE Smartworld, Ubiquitous Intelligence & Computing, Scalable Computing & Communications, Digital Twin, Privacy Computing, Metaverse, Autonomous & Trusted Vehicles (SmartWorld/UIC/ScalCom/DigitalTwin/PriComp/Meta). :2011–2018.
In the traditional Internet of Vehicles, communication data is easily tampered with and easily leaked. In order to improve the trust evaluation mechanism of the Internet of Vehicles and establish a trust relationship between vehicles, a blockchain-based Internet of Vehicles trust evaluation (BBTE) scheme is proposed. First, the scheme uses the roadside unit RSU to calculate the trust value of vehicle nodes and maintain the generation, verification and storage of blocks, so as to realize distributed data storage and ensure that data cannot be tampered with. Secondly, an efficient trust evaluation method is designed. The method integrates four trust decision factors: initial trust, historical experience trust, recommendation trust and RSU observation trust to obtain the overall trust value of vehicle nodes. In addition, in the process of constructing the recommendation trust method, the recommendation trust is divided into three categories according to the interaction between the recommended vehicle node and the communicator, use CRITIC to obtain the optimal weights of three recommended trusts, and use CRITIC to obtain the optimal weights of four trust decision-making factors to obtain the final trust value. Finally, the NS3 simulation platform is used to verify the security and accuracy of the trust evaluation method, and to improve the identification accuracy and detection rate of malicious vehicle nodes. The experimental analysis shows that the scheme can effectively deal with the gray hole attack, slander attack and collusion attack of other vehicle nodes, improve the security of vehicle node communication interaction, and provide technical support for the basic application of Internet of Vehicles security.
2023-08-25
Li, Bing, Ma, Maode, Zhang, Yonghe, Lai, Feiyu.  2022.  Access Control Supported by Information Service Entity in Named Data Networking. 2022 5th International Conference on Hot Information-Centric Networking (HotICN). :30–35.
Named Data Networking (NDN) has been viewed as a promising future Internet architecture. It requires a new access control scheme to prevent the injection of unauthorized data request. In this paper, an access control supported by information service entity (ACISE) is proposed for NDN networks. A trust entity, named the information service entity (ISE), is deployed in each domain for the registration of the consumer and the edge router. The identity-based cryptography (IBC) is used to generate a private key for the authorized consumer at the ISE and to calculate a signature encapsulated in the Interest packet at the consumer. Therefore, the edge router could support the access control by the signature verification of the Interest packets so that no Interest packet from unauthorized consumer could be forwarded or replied. Moreover, shared keys are negotiated between authorized consumers and their edge routers. The subsequent Interest packets would be verified by the message authentication code (MAC) instead of the signature. The simulation results have shown that the ACISE scheme would achieve a similar response delay to the original NDN scheme when the NDN is under no attacks. However, the ACISE scheme is immune to the cache pollution attacks so that it could maintain a much smaller response delay compared to the other schemes when the NDN network is under the attacks.
ISSN: 2831-4395
Liang, Bowen, Tian, Jianye, Zhu, Yi.  2022.  A Named In-Network Computing Service Deployment Scheme for NDN-Enabled Software Router. 2022 5th International Conference on Hot Information-Centric Networking (HotICN). :25–29.
Named in-network computing is an emerging technology of Named Data Networking (NDN). Through deploying the named computing services/functions on NDN router, the router can utilize its free resources to provide nearby computation for users while relieving the pressure of cloud and network edge. Benefitted from the characteristic of named addressing, named computing services/functions can be easily discovered and migrated in the network. To implement named in-network computing, integrating the computing services as Virtual Machines (VMs) into the software router is a feasible way, but how to effectively deploy the service VMs to optimize the local processing capability is still a challenge. Focusing on this problem, we first give the design of NDN-enabled software router in this paper, then propose a service earning based named service deployment scheme (SE-NSD). For available service VMs, SE-NSD not only considers their popularities but further evaluates their service earnings (processed data amount per CPU cycle). Through modelling the deployment problem as the knapsack problem, SE-NSD determines the optimal service VMs deployment scheme. The simulation results show that, comparing with the popularity-based deployment scheme, SE-NSD can promote about 30% in-network computing capability while slightly reducing the service invoking RTT of user.
ISSN: 2831-4395
2023-08-04
Ma, Yaodong, Liu, Kai, Luo, Xiling.  2022.  Game Theory Based Multi-agent Cooperative Anti-jamming for Mobile Ad Hoc Networks. 2022 IEEE 8th International Conference on Computer and Communications (ICCC). :901–905.
Currently, mobile ad hoc networks (MANETs) are widely used due to its self-configuring feature. However, it is vulnerable to the malicious jammers in practice. Traditional anti-jamming approaches, such as channel hopping based on deterministic sequences, may not be the reliable solution against intelligent jammers due to its fixed patterns. To address this problem, we propose a distributed game theory-based multi-agent anti-jamming (DMAA) algorithm in this paper. It enables each user to exploit all information from its neighboring users before the network attacks, and derive dynamic local policy knowledge to overcome intelligent jamming attacks efficiently as well as guide the users to cooperatively hop to the same channel with high probability. Simulation results demonstrate that the proposed algorithm can learn an optimal policy to guide the users to avoid malicious jamming more efficiently and rapidly than the random and independent Q-learning baseline algorithms,
2023-08-03
Liu, Zhijuan, Zhang, Li, Wu, Xuangou, Zhao, Wei.  2022.  Test Case Filtering based on Generative Adversarial Networks. 2022 IEEE 23rd International Conference on High Performance Switching and Routing (HPSR). :65–69.
Fuzzing is a popular technique for finding soft-ware vulnerabilities. Despite their success, the state-of-art fuzzers will inevitably produce a large number of low-quality inputs. In recent years, Machine Learning (ML) based selection strategies have reported promising results. However, the existing ML-based fuzzers are limited by the lack of training data. Because the mutation strategy of fuzzing can not effectively generate useful input, it is prohibitively expensive to collect enough inputs to train models. In this paper, propose a generative adversarial networks based solution to generate a large number of inputs to solve the problem of insufficient data. We implement the proposal in the American Fuzzy Lop (AFL), and the experimental results show that it can find more crashes at the same time compared with the original AFL.
ISSN: 2325-5609
2023-07-31
Liu, Lu, Song, Suwen, Wang, Zhongfeng.  2022.  A Novel Interleaving Scheme for Concatenated Codes on Burst-Error Channel. 2022 27th Asia Pacific Conference on Communications (APCC). :309—314.
With the rapid development of Ethernet, RS (544, 514) (KP4-forward error correction), which was widely used in high-speed Ethernet standards for its good performance-complexity trade-off, may not meet the demands of next-generation Ethernet for higher data transmission speed and better decoding performance. A concatenated code based on KP4-FEC has become a good solution because of its low complexity and excellent compatibility. For concatenated codes, aside from the selection of outer and inner codes, an efficient interleaving scheme is also very critical to deal with different channel conditions. Aiming at burst errors in wired communication, we propose a novel matrix interleaving scheme for concatenated codes which set the outer code as KP4-FEC and the inner code as Bose-Chaudhuri-Hocquenghem (BCH) code. In the proposed scheme, burst errors are evenly distributed to each BCH code as much as possible to improve their overall decoding efficiency. Meanwhile, the bit continuity in each symbol of the RS codeword is guaranteed during transmission, so the number of symbols affected by burst errors is minimized. Simulation results demonstrate that the proposed interleaving scheme can achieve a better decoding performance on burst-error channels than the original scheme. In some cases, the extra coding gain at the bit-error-rate (BER) of 1 × 10−15 can even reach 1 dB.
Tao, Kai, Long, Zhijun, Qian, Weifeng, Wei, Zitao, Chen, Xinda, Wang, Weiming, Xia, Yan.  2022.  Low-complexity Forward Error Correction For 800G Unamplified Campus Link. 2022 20th International Conference on Optical Communications and Networks (ICOCN). :1—3.
The discussion about forward error correction (FEC) used for 800G unamplified link (800LR) is ongoing. Aiming at two potential options for FEC bit error ratio (BER) threshold, we propose two FEC schemes, respectively based on channel-polarized (CP) multilevel coding (MLC) and bit interleaved coded modulation (BICM), with the same inner FEC code. The field-programmable gate array (FPGA) verification results indicate that with the same FEC overhead (OH), proposed CP-MLC outperforms BICM scheme with less resource and power consumption.
2023-07-28
Bhande, Sapana A, Chandrakar, V. K..  2022.  Fuzzy Logic based Static Synchronous Series Compensator (SSSC) to enhance Power System Security. 2022 IEEE IAS Global Conference on Emerging Technologies (GlobConET). :667—672.
In today's power market, it's vital to keep electrical energy affordable to the vast majority of people while maintaining the highest degree of dependability. Due to which, the transmission network must operate beyond transfer limitations, generating congestion on transmission lines. These transmission line difficulties can be alleviated with the use of reactive power adjustment based on FACTS devices. Using a fuzzy tuned Static Synchronous Series Compensator [SSSC], this research proposes a novel method for calculating the effective damping oscillation control signals. The performance of the SSSC is compared to that of fuzzy logic-based controllers using PI controllers. According to the simulation results, the SSSC with fuzzy logic control effectively improves power flow under disrupted conditions
2023-07-21
Said, Dhaou, Elloumi, Mayssa.  2022.  A New False Data Injection Detection Protocol based Machine Learning for P2P Energy Transaction between CEVs. 2022 IEEE International Conference on Electrical Sciences and Technologies in Maghreb (CISTEM). 4:1—5.
Without security, any network system loses its efficiency, reliability, and resilience. With the huge integration of the ICT capabilities, the Electric Vehicle (EV) as a transportation form in cities is becoming more and more affordable and able to reply to citizen and environmental expectations. However, the EV vulnerability to cyber-attacks is increasing which intensifies its negative impact on societies. This paper targets the cybersecurity issues for Connected Electric Vehicles (CEVs) in parking lots where a peer-to-peer(P2P) energy transaction system is launched. A False Data Injection Attack (FDIA) on the electricity price signal is considered and a Machine Learning/SVM classification protocol is used to detect and extract the right values. Simulation results are conducted to prove the effectiveness of this proposed model.
Shiqi, Li, Yinghui, Han.  2022.  Detection of Bad Data and False Data Injection Based on Back-Propagation Neural Network. 2022 IEEE PES Innovative Smart Grid Technologies - Asia (ISGT Asia). :101—105.
Power system state estimation is an essential tool for monitoring the operating conditions of the grid. However, the collected measurements may not always be reliable due to bad data from various faults as well as the increasing potential of being exposed to cyber-attacks, particularly from data injection attacks. To enhance the accuracy of state estimation, this paper presents a back-propagation neural network to detect and identify bad data and false data injections. A variety of training data exhibiting different statistical properties were used for training. The developed strategy was tested on the IEEE 30-bus and 118-bus power systems using MATLAB. Simulation results revealed the feasibility of the method for the detection and differentiation of bad data and false data injections in various operating scenarios.
Huang, Fanwei, Li, Qiuping, Zhao, Junhui.  2022.  Trust Management Model of VANETs Based on Machine Learning and Active Detection Technology. 2022 IEEE/CIC International Conference on Communications in China (ICCC Workshops). :412—416.
With the continuous development of vehicular ad hoc networks (VANETs), it brings great traffic convenience. How-ever, it is still a difficult problem for malicious vehicles to spread false news. In order to ensure the reliability of the message, an effective trust management model must be established, so that malicious vehicles can be detected and false information can be identified in the vehicle ad hoc network in time. This paper presents a trust management model based on machine learning and active detection technology, which evaluates the trust of vehicles and events to ensure the credibility of communication. Through the active detection mechanism, vehicles can detect the indirect trust of their neighbors, which improves the filtering speed of malicious nodes. Bayesian classifier can judge whether a vehicle is a malicious node by the state information of the vehicle, and can limit the behavior of the malicious vehicle at the first time. The simulation results show that our scheme can obviously restrict malicious vehicles.
Huang, Xiaoge, Yin, Hongbo, Wang, Yongsheng, Chen, Qianbin, Zhang, Jie.  2022.  Location-Based Reliable Sharding in Blockchain-Enabled Fog Computing Networks. 2022 14th International Conference on Wireless Communications and Signal Processing (WCSP). :12—16.
With the explosive growth of the internet of things (IoT) devices, there are amount of data requirements and computing tasks. Fog computing network that could provide computing, caching and communication resources closer to IoT devices (ID) is considered as a potential solution to deal with the vast computing tasks. To improve the performance of the fog computing network while ensuring data security, blockchain technology is enabled and a location-based reliable sharding (LRS) algorithm is proposed, which jointly considers the optimal number of shards, the geographical location of fog nodes (FNs), and the number of nodes in each shard. Firstly, the reliable sharding result is based on the reputation values of FNs, which are related to the decision information and historical reputation value of FNs in the consensus process. Moreover, a reputation based PBFT consensus algorithm is adopted to accelerate the consensus process. Furthermore, the normalized entropy is used to estimate the proportion of malicious nodes and optimize the number of shards. Finally, simulation results show the effectiveness of the proposed scheme.
2023-07-19
Vekić, Marko, Isakov, Ivana, Rapaić, Milan, Grabić, Stevan, Todorović, Ivan, Porobić, Vlado.  2022.  Decentralized microgrid control "beyond droop". 2022 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe). :1—5.
Various approaches of microgrid operation have been proposed, albeit with noticeable issues such as power-sharing, control of frequency and voltage excursions, applicability on different grids, etc. This paper proposes a goal function-based, decentralized control that addresses the mentioned problems and secures the microgrid stability by constraining the frequency and node deviations across the grid while simultaneously supporting the desired active power exchange between prosumer nodes. The control algorithm is independent of network topology and enables arbitrary node connection, i.e. seamless microgrid expandability. To confirm the effectiveness of the proposed control strategy, simulation results are presented and discussed.
2023-07-14
Dib, S., Amzert, A. K., Grimes, M., Benchiheb, A., Benmeddour, F..  2022.  Elliptic Curve Cryptography for Medical Image Security. 2022 19th International Multi-Conference on Systems, Signals & Devices (SSD). :1782–1787.
To contribute to medical data security, we propose the application of a modified algorithm on elliptical curves (ECC), initially proposed for text encryption. We implement this algorithm by eliminating the sender-receiver lookup table and grouping the pixel values into pairs to form points on a predefined elliptical curve. Simulation results show that the proposed algorithm offers the best compromise between the quality and the speed of cipher / decipher, especially for large images. A comparative study between ECC and AlGamel showed that the proposed algorithm offers better performance and its application, on medical images, is promising. Medical images contain many pieces of information and are often large. If the cryptographic operation is performed on every single pixel it will take more time. So, working on groups of pixels will be strongly recommended to save time and space.
ISSN: 2474-0446
Nguyen, Tuy Tan, Lee, Hanho.  2022.  Toward A Real-Time Elliptic Curve Cryptography-Based Facial Security System. 2022 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS). :364–367.
This paper presents a novel approach for a facial security system using elliptic curve cryptography. Face images extracted from input video are encrypted before sending to a remote server. The input face images are completely encrypted by mapping each pixel value of the detected face from the input video frame to a point on an elliptic curve. The original image can be recovered when needed using the elliptic curve cryptography decryption function. Specifically, we modify point multiplication designed for projective coordinates and apply the modified approach in affine coordinates to speed up scalar point multiplication operation. Image encryption and decryption operations are also facilitated using our existing scheme. Simulation results on Visual Studio demonstrate that the proposed systems help accelerate encryption and decryption operations while maintaining information confidentiality.
Rui, Li, Liu, Jun, Lu, Miaoxia.  2022.  Security Authentication Scheme for Low Earth Orbit Satellites Based on Spatial Channel Characteristics. 2022 IEEE 8th International Conference on Computer and Communications (ICCC). :396–400.
Security authentication can effectively solve the problem of access to Low Earth Orbit (LEO) satellites. However, the existing solutions still harbor some problems in the computational complexity of satellite authentication, flexible networking, resistance to brute force attacks and other aspects. So, a security authentication scheme for LEO satellites that integrates spatial channel characteristics is designed within the software defined network architecture. In this scheme, the spatial channel characteristics are introduced to the subsequent lightweight encryption algorithm to achieve effective defense against brute force attacks. According to security analysis and simulation results, the scheme can effectively reduce the computational overhead while protecting against replay attacks, brute force attacks, DOS attacks, and other known attacks.
2023-07-13
Kaliyaperumal, Karthikeyan, Sammy, F..  2022.  An Efficient Key Generation Scheme for Secure Sharing of Patients Health Records using Attribute Based Encryption. 2022 International Conference on Communication, Computing and Internet of Things (IC3IoT). :1–6.
Attribute Based Encryption that solely decrypts the cipher text's secret key attribute. Patient information is maintained on trusted third party servers in medical applications. Before sending health records to other third party servers, it is essential to protect them. Even if data are encrypted, there is always a danger of privacy violation. Scalability problems, access flexibility, and account revocation are the main security challenges. In this study, individual patient health records are encrypted utilizing a multi-authority ABE method that permits a multiple number of authorities to govern the attributes. A strong key generation approach in the classic Attribute Based Encryption is proposed in this work, which assures the robust protection of health records while also demonstrating its effectiveness. Simulation is done by using CloudSim Simulator and Statistical reports were generated using Cloud Reports. Efficiency, computation time and security of our proposed scheme are evaluated. The simulation results reveal that the proposed key generation technique is more secure and scalable.
2023-07-12
Xiao, Weidong, Zhang, Xu, Wang, Dongbin.  2022.  Cross-Security Domain Dynamic Orchestration Algorithm of Network Security Functions. 2022 7th IEEE International Conference on Data Science in Cyberspace (DSC). :413—419.
To prevent all sorts of attacks, the technology of security service function chains (SFC) is proposed in recent years, it becomes an attractive research highlights. Dynamic orchestration algorithm can create SFC according to the resource usage of network security functions. The current research on creating SFC focuses on a single domain. However in reality the large and complex networks are divided into security domains according to different security levels and managed separately. Therefore, we propose a cross-security domain dynamic orchestration algorithm to create SFC for network security functions based on ant colony algorithm(ACO) and consider load balancing, shortest path and minimum delay as optimization objectives. We establish a network security architecture based on the proposed algorithm, which is suitable for the industrial vertical scenarios, solves the deployment problem of the dynamic orchestration algorithm. Simulation results verify that our algorithm achieves the goal of creating SFC across security domains and demonstrate its performance in creating service function chains to resolve abnormal traffic flows.
2023-07-11
Wang, Rongzhen, Zhang, Bing, Wen, Shixi, Zhao, Yuan.  2022.  Security Platoon Control of Connected Vehicle Systems under DoS Attacks and Dynamic Uncertainty. IECON 2022 – 48th Annual Conference of the IEEE Industrial Electronics Society. :1—5.
In this paper, the distributed security control problem of connected vehicle systems (CVSs) is investigated under denial of service (DoS) attacks and uncertain dynamics. DoS attacks usually block communication channels, resulting in the vehicle inability to receive data from the neighbors. In severe cases, it will affect the control performance of CVSs and even cause vehicle collision and life threats. In order to keep the vehicle platoon stable when the DoS attacks happen, we introduce a random characteristic to describe the impact of the packet loss behavior caused by them. Dependent on the length of the lost packets, we propose a security platoon control protocol to deal with it. Furthermore, the security platoon control problem of CVSs is transformed into a stable problem of Markov jump systems (MJSs) with uncertain parameters. Next, the Lyapunov function method and linear matrix inequations (LMI) are used to analyze the internal stability and design controller. Finally, several simulation results are presented to illustrate the effectiveness of the proposed method.
2023-06-30
Kai, Liu, Jingjing, Wang, Yanjing, Hu.  2022.  Localized Differential Location Privacy Protection Scheme in Mobile Environment. 2022 IEEE 5th International Conference on Big Data and Artificial Intelligence (BDAI). :148–152.
When users request location services, they are easy to expose their privacy information, and the scheme of using a third-party server for location privacy protection has high requirements for the credibility of the server. To solve these problems, a localized differential privacy protection scheme in mobile environment is proposed, which uses Markov chain model to generate probability transition matrix, and adds Laplace noise to construct a location confusion function that meets differential privacy, Conduct location confusion on the client, construct and upload anonymous areas. Through the analysis of simulation experiments, the scheme can solve the problem of untrusted third-party server, and has high efficiency while ensuring the high availability of the generated anonymous area.
2023-06-22
Lei, Gang, Wu, Junyi, Gu, Keyang, Ji, Lejun, Cao, Yuanlong, Shao, Xun.  2022.  An QUIC Traffic Anomaly Detection Model Based on Empirical Mode Decomposition. 2022 IEEE 23rd International Conference on High Performance Switching and Routing (HPSR). :76–80.
With the advent of the 5G era, high-speed and secure network access services have become a common pursuit. The QUIC (Quick UDP Internet Connection) protocol proposed by Google has been studied by many scholars due to its high speed, robustness, and low latency. However, the research on the security of the QUIC protocol by domestic and foreign scholars is insufficient. Therefore, based on the self-similarity of QUIC network traffic, combined with traffic characteristics and signal processing methods, a QUIC-based network traffic anomaly detection model is proposed in this paper. The model decomposes and reconstructs the collected QUIC network traffic data through the Empirical Mode Decomposition (EMD) method. In order to judge the occurrence of abnormality, this paper also intercepts overlapping traffic segments through sliding windows to calculate Hurst parameters and analyzes the obtained parameters to check abnormal traffic. The simulation results show that in the network environment based on the QUIC protocol, the Hurst parameter after being attacked fluctuates violently and exceeds the normal range. It also shows that the anomaly detection of QUIC network traffic can use the EMD method.
ISSN: 2325-5609
2023-06-09
Haggi, Hamed, Sun, Wei.  2022.  Cyber-Physical Vulnerability Assessment of P2P Energy Exchanges in Active Distribution Networks. 2022 IEEE Kansas Power and Energy Conference (KPEC). :1—5.
Owing to the decreasing costs of distributed energy resources (DERs) as well as decarbonization policies, power systems are undergoing a modernization process. The large deployment of DERs together with internet of things (IoT) devices provide a platform for peer-to-peer (P2P) energy trading in active distribution networks. However, P2P energy trading with IoT devices have driven the grid more vulnerable to cyber-physical threats. To this end, in this paper, a resilience-oriented P2P energy exchange model is developed considering three phase unbalanced distribution systems. In addition, various scenarios for vulnerability assessment of P2P energy exchanges considering adverse prosumers and consumers, who provide false information regarding the price and quantity with the goal of maximum financial benefit and system operation disruption, are considered. Techno-economic survivability analysis against these attacks are investigated on a IEEE 13-node unbalanced distribution test system. Simulation results demonstrate that adverse peers can affect the physical operation of grid, maximize their benefits, and cause financial loss of other agents.
Kumar, Vivek, Hote, Yogesh V..  2022.  Analyzing and Mitigating of Time Delay Attack (TDA) by using Fractional Filter based IMC-PID with Smith Predictor. 2022 IEEE 61st Conference on Decision and Control (CDC). :3194—3199.
In this era, with a great extent of automation and connection, modern production processes are highly prone to cyber-attacks. The sensor-controller chain becomes an obvious target for attacks because sensors are commonly used to regulate production facilities. In this research, we introduce a new control configuration for the system, which is sensitive to time delay attacks (TDA), in which data transfer from the sensor to the controller is intentionally delayed. The attackers want to disrupt and damage the system by forcing controllers to use obsolete data about the system status. In order to improve the accuracy of delay identification and prediction, as well as erroneous limit and estimation for control, a new control structure is developed by an Internal Model Control (IMC) based Proportional-Integral-Derivative (PID) scheme with a fractional filter. An additional concept is included to mitigate the effect of time delay attack, i.e., the smith predictor. Simulation studies of the established control framework have been implemented with two numerical examples. The performance assessment of the proposed method has been done based on integral square error (ISE), integral absolute error (IAE) and total variation (TV).
2023-05-26
Li, Dahua, Li, Dapeng, Liu, Junjie, Song, Yu, Ji, Yuehui.  2022.  Backstepping Sliding Mode Control for Cyber-Physical Systems under False Data Injection Attack. 2022 IEEE International Conference on Mechatronics and Automation (ICMA). :357—362.
The security control problem of cyber-physical system (CPS) under actuator attacks is studied in the paper. Considering the strict-feedback cyber-physical systems with external disturbance, a security control scheme is proposed by combining backstepping method and super-twisting sliding mode technology when the transmission control input signal of network layer is under false data injection(FDI) attack. Firstly, the unknown nonlinear function of the CPS is identified by Radial Basis Function Neural Network. Secondly, the backstepping method and super-twisting sliding mode algorithm are combined to eliminate the influence of actuator attack and ensure the robustness of the control system. Then, by Lyapunov stability theory, it is proved that the proposed control scheme can ensure that all signals in the closed-loop system are semi-global and ultimately uniformly bounded. Finally, the effectiveness of the proposed control scheme is verified by the inverted pendulum simulation.
2023-05-19
Li, Wei, Liao, Jie, Qian, Yuwen, Zhou, Xiangwei, Lin, Yan.  2022.  A Wireless Covert Communication System: Antenna Coding and Achievable Rate Analysis. ICC 2022 - IEEE International Conference on Communications. :438—443.
In covert communication systems, covert messages can be transmitted without being noticed by the monitors or adversaries. Therefore, the covert communication technology has emerged as a novel method for network authentication, copyright protection, and the evidence of cybercrimes. However, how to design the covert communication in the physical layer of wireless networks and how to improve the channel capacity for the covert communication systems are very challenging. In this paper, we propose a wireless covert communication system, where data streams from the antennas of the transmitter are coded according to a code book to transmit covert and public messages. We adopt a modulation scheme, named covert quadrature amplitude modulation (QAM), to modulate the messages, where the constellation of covert information bits deviates from its normal coordinates. Moreover, the covert receiver can detect the covert information bits according to the constellation departure. Simulation results show that proposed covert communication system can significantly improve the covert data rate and reduce the covert bit error rate, in comparison with the traditional covert communication systems.