Biblio
With the development of the information age, the process of global networking continues to deepen, and the cyberspace security has become an important support for today’s social functions and social activities. Web applications which have many security risks are the most direct interactive way in the process of the Internet activities. That is why the web applications face a large number of network attacks. Interpretive dynamic programming languages are easy to lean and convenient to use, they are widely used in the development of cross-platform web systems. As well as benefit from these advantages, the web system based on those languages is hard to detect errors and maintain the complex system logic, increasing the risk of system vulnerability and cyber threats. The attack defense of systems based on interpretive dynamic programming languages is widely concerned by researchers. Since the advance of endogenous security technologies, there are breakthroughs on the research of web system security. Compared with traditional security defense technologies, these technologies protect the system with their uncertainty, randomness and dynamism. Based on several common network attacks, the traditional system security defense technology and endogenous security technology of web application based on interpretive dynamic languages are surveyed and compared in this paper. Furthermore, the possible research directions of those technologies are discussed.
The article looks at information risk concepts, how it is assessed, web application vulnerabilities and how to identify them. A prototype web application vulnerability scanner has been developed with a function of information risk assessment based on fuzzy logic. The software developed is used in laboratory sessions on data protection discipline.
Video surveillance plays an important role in our times. It is a great help in reducing the crime rate, and it can also help to monitor the status of facilities. The performance of the video surveillance system is limited by human factors such as fatigue, time efficiency, and human resources. It would be beneficial for all if fully automatic video surveillance systems are employed to do the job. The automation of the video surveillance system is still not satisfying regarding many problems such as the accuracy of the detector, bandwidth consumption, storage usage, etc. This scientific paper mainly focuses on a video surveillance system using Convolutional Neural Networks (CNN), IoT and cloud. The system contains multi nods, each node consists of a microprocessor(Raspberry Pi) and a camera, the nodes communicate with each other using client and server architecture. The nodes can detect humans using a pretraining MobileNetv2-SSDLite model and Common Objects in Context(COCO) dataset, the captured video will stream to the main node(only one node will communicate with cloud) in order to stream the video to the cloud. Also, the main node will send an SMS notification to the security team to inform the detection of humans. The security team can check the videos captured using a mobile application or web application. Operating the Object detection model of Deep learning will be required a large amount of the computational power, for instance, the Raspberry Pi with a limited in performance for that reason we used the MobileNetv2-SSDLite model.
The root cause of cross-site scripting(XSS) attack is that the JavaScript engine can't distinguish between the JavaScript code in Web application and the JavaScript code injected by attackers. Moving Target Defense (MTD) is a novel technique that aim to defeat attacks by frequently changing the system configuration so that attackers can't catch the status of the system. This paper describes the design and implement of a XSS defense method based on Moving Target Defense technology. This method adds a random attribute to each unsafe element in Web application to distinguish between the JavaScript code in Web application and the JavaScript code injected by attackers and uses a security check function to verify the random attribute, if there is no random attribute or the random attribute value is not correct in a HTML (Hypertext Markup Language) element, the execution of JavaScript code will be prevented. The experiment results show that the method can effectively prevent XSS attacks and have little impact on the system performance.
The Agave Platform first appeared in 2011 as a pilot project for the iPlant Collaborative [11]. In its first two years, Foundation saw over 40% growth per month, supporting 1000+ clients, 600+ applications, 4 HPC systems at 3 centers across the US. It also gained users outside of plant biology. To better serve the needs of the general open science community, we rewrote Foundation as a scalable, cloud native application and named it the Agave Platform. In this paper we present the Agave Platform, a Science-as-a-Service (ScaaS) platform for reproducible science. We provide a brief history and technical overview of the project, and highlight three case studies leveraging the platform to create synergistic value for their users.
There are over 1 billion websites today, and most of them are designed using content management systems. Cybersecurity is one of the most discussed topics when it comes to a web application and protecting the confidentiality, integrity of data has become paramount. SQLi is one of the most commonly used techniques that hackers use to exploit a security vulnerability in a web application. In this paper, we compared SQLi vulnerabilities found on the three most commonly used content management systems using a vulnerability scanner called Nikto, then SQLMAP for penetration testing. This was carried on default WordPress, Drupal and Joomla website pages installed on a LAMP server (Iocalhost). Results showed that each of the content management systems was not susceptible to SQLi attacks but gave warnings about other vulnerabilities that could be exploited. Also, we suggested practices that could be implemented to prevent SQL injections.
Data dependency flow have been reformulated as Context Free Grammar (CFG) reachability problem, and the idea was explored in detection of some web vulnerabilities, particularly Cross Site Scripting (XSS) and Access Control. However, reformulation of SQL Injection Vulnerability (SQLIV) detection as grammar reachability problem has not been investigated. In this paper, concepts of data dependency flow was used to reformulate SQLIVs detection as a CFG reachability problem. The paper, consequently defines reachability analysis strategy for SQLIVs detection.
Today, maintaining the security of the web application is of great importance. Sites Intermediate Script (XSS) is a security flaw that can affect web applications. This error allows an attacker to add their own malicious code to HTML pages that are displayed to the user. Upon execution of the malicious code, the behavior of the system or website can be completely changed. The XSS security vulnerability is used by attackers to steal the resources of a web browser such as cookies, identity information, etc. by adding malicious Java Script code to the victim's web applications. Attackers can use this feature to force a malicious code worker into a Web browser of a user, since Web browsers support the execution of embedded commands on web pages to enable dynamic web pages. This work has been proposed as a technique to detect and prevent manipulation that may occur in web sites, and thus to prevent the attack of Site Intermediate Script (XSS) attacks. Ayrica has developed four different languages that detect XSS explanations with Asp.NET, PHP, PHP and Ruby languages, and the differences in the detection of XSS attacks in environments provided by different programming languages.
In order to support large volume of transactions and number of users, as estimated by the load demand modeling, a system needs to scale in order to continue to satisfy required quality attributes. In particular, for systems exposed to the Internet, scaling up may increase the attack surface susceptible to malicious intrusions. The new proactive approach based on the concept of Moving Target Defense (MTD) should be considered as a complement to current cybersecurity protection. In this paper, we analyze the scalability of the Self Cleansing Intrusion Tolerance (SCIT) MTD approach using Cloud infrastructure services. By applying the model of MTD with continuous rotation and diversity to a multi-node or multi-instance system, we argue that the effectiveness of the approach is dependent on the share-nothing architecture pattern of the large system. Furthermore, adding more resources to the MTD mechanism can compensate to achieve the desired level of secure availability.
Integrating security testing into the workflow of software developers not only can save resources for separate security testing but also reduce the cost of fixing security vulnerabilities by detecting them early in the development cycle. We present an automatic testing approach to detect a common type of Cross Site Scripting (XSS) vulnerability caused by improper encoding of untrusted data. We automatically extract encoding functions used in a web application to sanitize untrusted inputs and then evaluate their effectiveness by automatically generating XSS attack strings. Our evaluations show that this technique can detect 0-day XSS vulnerabilities that cannot be found by static analysis tools. We will also show that our approach can efficiently cover a common type of XSS vulnerability. This approach can be generalized to test for input validation against other types injections such as command line injection.
Content Security Policy (CSP) is powerful client-side security layer that helps in mitigating and detecting wide ranges of Web attacks including cross-site scripting (XSS). However, utilizing CSP by site administrators is a fallible process and may require significant changes in web application code. In this paper, we propose an approach to help site administers to overcome these limitations in order to utilize the full benefits of CSP mechanism which leads to more immune sites from XSS. The algorithm is implemented as a plugin. It does not interfere with the Web application original code. The plugin can be “installed” on any other web application with minimum efforts. The algorithm can be implemented as part of Web Server layer, not as part of the business logic layer. It can be extended to support generating CSP for contents that are modified by JavaScript after loading. Current approach inspects the static contents of URLs.
Web applications are a frequent target of successful attacks. In most web frameworks, the damage is amplified by the fact that application code is responsible for security enforcement. In this paper, we design and evaluate Radiatus, a shared-nothing web framework where application-specific computation and storage on the server is contained within a sandbox with the privileges of the end-user. By strongly isolating users, user data and service availability can be protected from application vulnerabilities. To make Radiatus practical at the scale of modern web applications, we introduce a distributed capabilities system to allow fine-grained secure resource sharing across the many distributed services that compose an application. We analyze the strengths and weaknesses of a shared-nothing web architecture, which protects applications from a large class of vulnerabilities, but adds an overhead of 60.7% per server and requires an additional 31MB of memory per active user. We demonstrate that the system can scale to 20K operations per second on a 500-node AWS cluster.
With the growth of the Internet, web applications are becoming very popular in the user communities. However, the presence of security vulnerabilities in the source code of these applications is raising cyber crime rate rapidly. It is required to detect and mitigate these vulnerabilities before their exploitation in the execution environment. Recently, Open Web Application Security Project (OWASP) and Common Vulnerabilities and Exposures (CWE) reported Cross-Site Scripting (XSS) as one of the most serious vulnerabilities in the web applications. Though many vulnerability detection approaches have been proposed in the past, existing detection approaches have the limitations in terms of false positive and false negative results. This paper proposes a context-sensitive approach based on static taint analysis and pattern matching techniques to detect and mitigate the XSS vulnerabilities in the source code of web applications. The proposed approach has been implemented in a prototype tool and evaluated on a public data set of 9408 samples. Experimental results show that proposed approach based tool outperforms over existing popular open source tools in the detection of XSS vulnerabilities.
Since the past 20 years the uses of web in daily life is increasing and becoming trend now. As the use of the web is increasing, the use of web application is also increasing. Apparently most of the web application exists up to today have some vulnerability that could be exploited by unauthorized person. Some of well-known web application vulnerabilities are Structured Query Language (SQL) Injection, Cross-Site Scripting (XSS) and Cross-Site Request Forgery (CSRF). By compromising with these web application vulnerabilities, the system cracker can gain information about the user and lead to the reputation of the respective organization. Usually the developers of web applications did not realize that their web applications have vulnerabilities. They only realize them when there is an attack or manipulation of their code by someone. This is normal as in a web application, there are thousands of lines of code, therefore it is not easy to detect if there are some loopholes. Nowadays as the hacking tools and hacking tutorials are easier to get, lots of new hackers are born. Even though SQL injection is very easy to protect against, there are still large numbers of the system on the internet are vulnerable to this type of attack because there will be a few subtle condition that can go undetected. Therefore, in this paper we propose a detection model for detecting and recognizing the web vulnerability which is; SQL Injection based on the defined and identified criteria. In addition, the proposed detection model will be able to generate a report regarding the vulnerability level of the web application. As the consequence, the proposed detection model should be able to decrease the possibility of the SQL Injection attack that can be launch onto the web application.
Currently, dependence on web applications is increasing rapidly for social communication, health services, financial transactions and many other purposes. Unfortunately, the presence of cross-site scripting vulnerabilities in these applications allows malicious user to steals sensitive information, install malware, and performs various malicious operations. Researchers proposed various approaches and developed tools to detect XSS vulnerability from source code of web applications. However, existing approaches and tools are not free from false positive and false negative results. In this paper, we propose a taint analysis and defensive programming based HTML context-sensitive approach for precise detection of XSS vulnerability from source code of PHP web applications. It also provides automatic suggestions to improve the vulnerable source code. Preliminary experiments and results on test subjects show that proposed approach is more efficient than existing ones.