Visible to the public Biblio

Filters: Keyword is file storage  [Clear All Filters]
2023-02-17
Dreyer, Julian, Tönjes, Ralf, Aschenbruck, Nils.  2022.  Decentralizing loT Public- Key Storage using Distributed Ledger Technology. 2022 International Wireless Communications and Mobile Computing (IWCMC). :172–177.
The secure Internet of Things (loT) increasingly relies on digital cryptographic signatures which require a private signature and public verification key. By their intrinsic nature, public keys are meant to be accessible to any interested party willing to verify a given signature. Thus, the storing of such keys is of great concern, since an adversary shall not be able to tamper with the public keys, e.g., on a local filesystem. Commonly used public-key infrastructures (PKIs), which handle the key distribution and storage, are not feasible in most use-cases, due to their resource intensity and high complexity. Thus, the general storing of the public verification keys is of notable interest for low-resource loT networks. By using the Distributed Ledger Technology (DLT), this paper proposes a decentralized concept for storing public signature verification keys in a tamper-resistant, secure, and resilient manner. By combining lightweight public-key exchange protocols with the proposed approach, the storing of verification keys becomes scalable and especially suitable for low-resource loT devices. This paper provides a Proof-of-Concept implementation of the DLT public-key store by extending our previously proposed NFC-Key Exchange (NFC-KE) protocol with a decentralized Hyperledger Fabric public-key store. The provided performance analysis shows that by using the decentralized keystore, the NFC- KE protocol gains an increased tamper resistance and overall system resilience while also showing expected performance degradations with a low real-world impact.
ISSN: 2376-6506
2021-01-25
ManJiang, D., Kai, C., ZengXi, W., LiPeng, Z..  2020.  Design of a Cloud Storage Security Encryption Algorithm for Power Bidding System. 2020 IEEE 4th Information Technology, Networking, Electronic and Automation Control Conference (ITNEC). 1:1875–1879.
To solve the problem of poor security and performance caused by traditional encryption algorithm in the cloud data storage of power bidding system, we proposes a hybrid encryption method based on symmetric encryption and asymmetric encryption. In this method, firstly, the plaintext upload file is divided into several blocks according to the proportion, then the large file block is encrypted by symmetrical encryption algorithm AES to ensure the encryption performance, and then the small file block and AES key are encrypted by asymmetric encryption algorithm ECC to ensure the file encryption strength and the security of key transmission. Finally, the ciphertext file is generated and stored in the cloud storage environment to prevent sensitive files Pieces from being stolen and destroyed. The experimental results show that the hybrid encryption method can improve the anti-attack ability of cloud storage files, ensure the security of file storage, and have high efficiency of file upload and download.