Biblio
Blockchain, the technology behind the popular Bitcoin, is considered a "security by design" system as it is meant to create security among a group of distrustful parties yet without a central trusted authority. The security of blockchain relies on the premise of honest-majority, namely, the blockchain system is assumed to be secure as long as the majority of consensus voting power is honest. And in the case of proof-of-work (PoW) blockchain, adversaries cannot control more than 50% of the network's gross computing power. However, this 50% threshold is based on the analysis of computing power only, with implicit and idealistic assumptions on the network and node behavior. Recent researches have alluded that factors such as network connectivity, presence of blockchain forks, and mining strategy could undermine the consensus security assured by the honest-majority, but neither concrete analysis nor quantitative evaluation is provided. In this paper we fill the gap by proposing an analytical model to assess the impact of network connectivity on the consensus security of PoW blockchain under different adversary models. We apply our analytical model to two adversarial scenarios: 1) honest-but-potentially-colluding, 2) selfish mining. For each scenario, we quantify the communication capability of nodes involved in a fork race and estimate the adversary's mining revenue and its impact on security properties of the consensus protocol. Simulation results validated our analysis. Our modeling and analysis provide a paradigm for assessing the security impact of various factors in a distributed consensus system.
Physical Unclonable Functions (PUFs) are a promising technology to secure low-cost devices. A PUF is a function whose values depend on the physical characteristics of the underlying hardware: the same PUF implemented on two identical integrated circuits will return different values. Thus, a PUF can be used as a unique fingerprint identifying one specific physical device among (apparently) identical copies that run the same firmware on the same hardware. PUFs, however, are tricky to implement, and a number of attacks have been reported in the literature, often due to wrong assumptions about the provided security guarantees and/or the attacker model. In this paper, we present the first mechanized symbolic model for PUFs that allows for precisely reasoning about their security with respect to a variegate set of attackers. We consider mutual authentication protocols based on different kinds of PUFs and model attackers that are able to access PUF values stored on servers, abuse the PUF APIs, model the PUF behavior and exploit error correction data to reproduce the PUF values. We prove security properties and we formally specify the capabilities required by the attacker to break them. Our analysis points out various subtleties, and allows for a systematic comparison between different PUF-based protocols. The mechanized models are easily extensible and can be automatically checked with the Tamarin prover.
The design of modern computer hardware heavily relies on third-party intellectual property (IP) cores, which may contain malicious hardware Trojans that could be exploited by an adversary to leak secret information or take control of the system. Existing hardware Trojan detection methods either require a golden reference design for comparison or extensive functional testing to identify suspicious signals. In this paper, we propose a new formal verification method to verify the security of hardware designs. The proposed solution formalizes fine grained gate level information flow model for proving security properties of hardware designs in the Coq theorem prover environment. Compare with existing register transfer level (RTL) information flow security models, our model only needs to translate a small number of logic primitives to their formal representations without the need of supporting the rich RTL HDL semantics or dealing with complex conditional branch or loop structures. As a result, a gate level information flow model can be created at much lower complexity while achieving significantly higher precision in modeling the security behavior of hardware designs. We use the AES-T1700 benchmark from Trust-HUB to demonstrate the effectiveness of our solution. Experimental results show that our method can detect and pinpoint the Trojan.
Crowdsensing, driven by the proliferation of sensor-rich mobile devices, has emerged as a promising data sensing and aggregation paradigm. Despite useful, traditional crowdsensing systems typically rely on a centralized third-party platform for data collection and processing, which leads to concerns like single point of failure and lack of operation transparency. Such centralization hinders the wide adoption of crowdsensing by wary participants. We therefore explore an alternative design space of building crowdsensing systems atop the emerging decentralized blockchain technology. While enjoying the benefits brought by the public blockchain, we endeavor to achieve a consolidated set of desirable security properties with a proper choreography of latest techniques and our customized designs. We allow data providers to safely contribute data to the transparent blockchain with the confidentiality guarantee on individual data and differential privacy on the aggregation result. Meanwhile, we ensure the service correctness of data aggregation and sanitization by delicately employing hardware-assisted transparent enclave. Furthermore, we maintain the robustness of our system against faulty data providers that submit invalid data, with a customized zero-knowledge range proof scheme. The experiment results demonstrate the high efficiency of our designs on both mobile client and SGX-enabled server, as well as reasonable on-chain monetary cost of running our task contract on Ethereum.
Opportunities arising from IoT-enabled applications are significant, but market growth is inhibited by concerns over security and complexity. To address these issues, we propose the ERAMIS methodology, which is based on instantiation of a reference architecture that captures common design features, embodies best practice, incorporates good security properties by design, and makes explicit provision for operational security services and processes.
The increase of the digitalization taking place in various industrial domains is leading developers towards the design and implementation of more and more complex networked control systems (NCS) supported by Wireless Sensor Networks (WSN). This naturally raises new challenges for the current WSN technology, namely in what concerns improved guarantees of technical aspects such as real-time communications together with safe and secure transmissions. Notably, in what concerns security aspects, several cryptographic protocols have been proposed. Since the design of these protocols is usually error-prone, security breaches can still be exposed and MALICIOUSly exploited unless they are rigorously analyzed and verified. In this paper we formally verify, using ProVerif, three cryptographic protocols used in WSN, regarding the security properties of secrecy and authenticity. The security analysis performed in this paper is more robust than the ones performed in related work. Our contributions involve analyzing protocols that were modeled considering an unbounded number of participants and actions, and also the use of a hierarchical system to classify the authenticity results. Our verification shows that the three analyzed protocols guarantee secrecy, but can only provide authenticity in specific scenarios.
Exclusive-or (XOR) operations are common in cryptographic protocols, in particular in RFID protocols and electronic payment protocols. Although there are numerous applications, due to the inherent complexity of faithful models of XOR, there is only limited tool support for the verification of cryptographic protocols using XOR. The Tamarin prover is a state-of-the-art verification tool for cryptographic protocols in the symbolic model. In this paper, we improve the underlying theory and the tool to deal with an equational theory modeling XOR operations. The XOR theory can be freely combined with all equational theories previously supported, including user-defined equational theories. This makes Tamarin the first tool to support simultaneously this large set of equational theories, protocols with global mutable state, an unbounded number of sessions, and complex security properties including observational equivalence. We demonstrate the effectiveness of our approach by analyzing several protocols that rely on XOR, in particular multiple RFID-protocols, where we can identify attacks as well as provide proofs.
Industrial control systems are changing from monolithic to distributed and interconnected architectures, entering the era of industrial IoT. One fundamental issue is that security properties of such distributed control systems are typically only verified empirically, during development and after system deployment. We propose a novel modelling framework for the security verification of distributed industrial control systems, with the goal of moving towards early design stage formal verification. In our framework we model industrial IoT infrastructures, attack patterns, and mitigation strategies for countering attacks. We conduct model checking-based formal analysis of system security through scenario execution, where the analysed system is exposed to attacks and implement mitigation strategies. We study the applicability of our framework for large systems using a scalability analysis.
With the increasing inter-connection of operation technology to the IT network, the security threat to the Industrial Control System (ICS) is increasing daily. Therefore, it is critical to utilize formal verification technique such as model checking to mathematically prove the correctness of security and safety requirements in the controller logic before it is deployed on the field. However, model checking requires considerable effort for regular ICS users and control technician to verify properties. This paper, provides a simpler approach to the model checking of temperature process control system by first starting with the control module design without formal verification. Second, identifying possible vulnerabilities in such design. Third, verifying the safety and security properties with a formal method.
Connected cars have received massive attention in Intelligent Transportation System. Many potential services, especially safety-related ones, rely on spatial-temporal messages periodically broadcast by cars. Without a secure authentication algorithm, malicious cars may send out invalid spatial-temporal messages and then deny creating them. Meanwhile, a lot of private information may be disclosed from these spatial-temporal messages. Since cars move on expressways at high speed, any authentication must be performed in real-time to prevent crashes. In this paper, we propose a Fast and Anonymous Spatial-Temporal Trust (FastTrust) mechanism to ensure these properties. In contrast to most authentication protocols which rely on fixed infrastructures, FastTrust is distributed and mostly designed on symmetric-key cryptography and an entropy-based commitment, and is able to fast authenticate spatial-temporal messages. FastTrust also ensures the anonymity and unlinkability of spatial-temporal messages by developing a pseudonym-varying scheduling scheme on cars. We provide both analytical and simulation evaluations to show that FastTrust achieves the security and privacy properties. FastTrust is low-cost in terms of communication and computational resources, authenticating 20 times faster than existing Elliptic Curve Digital Signature Algorithm.
Existing data management and searching system for Internet of Things uses centralized database. For this reason, security vulnerabilities are found in this system which consists of server such as IP spoofing, single point of failure and Sybil attack. This paper proposes data management system is based on blockchain which ensures security by using ECDSA digital signature and SHA-256 hash function. Location that is indicated as IP address of data owner and data name are transcribed in block which is included in the blockchain. Furthermore, we devise data manegement and searching method through analyzing block hash value. By using security properties of blockchain such as authentication, non-repudiation and data integrity, this system has advantage of security comparing to previous data management and searching system using centralized database or P2P networks.
In many-core systems, the processing elements are interconnected using Networks-on-Chip. An example of on-chip network is SoCIN, a low-cost interconnect architecture whose original design did not take into account security aspects. This network is vulnerable to eavesdropping and spoofing attacks, what limits its use in systems that require security. This work addresses this issue and aims to ensure the security properties of confidentiality and authenticity of SoCIN-based systems. For this, we propose the use of security mechanisms based on symmetric encryption at the network level using the AES (Advanced Encryption Standard) model. A reference multi-core platform was implemented and prototyped in programmable logic aiming at performing experiments to evaluate the implemented mechanisms. Results demonstrate the effectiveness of the proposed solution in protecting the system against the target attacks. The impact on the network performance is acceptable and the silicon overhead is equivalent to other solutions found in the literature.
Verifying that hardware design implementations adhere to specifications is a time intensive and sometimes intractable problem due to the massive size of the system's state space. Formal methods techniques can be used to prove certain tractable specification properties; however, they are expensive, and often require subject matter experts to develop and solve. Nonetheless, hardware verification is a critical process to ensure security and safety properties are met, and encapsulates problems associated with trust and reliability. For complex designs where coverage of the entire state space is unattainable, prioritizing regions most vulnerable to security or reliability threats would allow efficient allocation of valuable verification resources. Stackelberg security games model interactions between a defender, whose goal is to assign resources to protect a set of targets, and an attacker, who aims to inflict maximum damage on the targets after first observing the defender's strategy. In equilibrium, the defender has an optimal security deployment strategy, given the attacker's best response. We apply this Stackelberg security framework to synthesized hardware implementations using the design's network structure and logic to inform defender valuations and verification costs. The defender's strategy in equilibrium is thus interpreted as a prioritization of the allocation of verification resources in the presence of an adversary. We demonstrate this technique on several open-source synthesized hardware designs.
The area of secure compilation aims to design compilers which produce hardened code that can withstand attacks from low-level co-linked components. So far, there is no formal correctness criterion for secure compilers that comes with a clear understanding of what security properties the criterion actually provides. Ideally, we would like a criterion that, if fulfilled by a compiler, guarantees that large classes of security properties of source language programs continue to hold in the compiled program, even as the compiled program is run against adversaries with low-level attack capabilities. This paper provides such a novel correctness criterion for secure compilers, called trace-preserving compilation (TPC). We show that TPC preserves a large class of security properties, namely all safety hyperproperties. Further, we show that TPC preserves more properties than full abstraction, the de-facto criterion used for secure compilation. Then, we show that several fully abstract compilers described in literature satisfy an additional, common property, which implies that they also satisfy TPC. As an illustration, we prove that a fully abstract compiler from a typed source language to an untyped target language satisfies TPC.
Security protocols are designed in order to provide security properties (goals). They achieve their goals using cryptographic primitives such as key agreement or hash functions. Security analysis tools are used in order to verify whether a security protocol achieves its goals or not. The analysed property by specific purpose tools are predefined properties such as secrecy (confidentiality), authentication or non-repudiation. There are security goals that are defined by the user in systems with security requirements. Analysis of these properties is possible with general purpose analysis tools such as coloured petri nets (CPN). This research analyses two security properties that are defined in a protocol that is based on trusted platform module (TPM). The analysed protocol is proposed by Delaune to use TPM capabilities and secrets in order to open only one secret from two submitted secrets to a recipient.
We argue that emergent behavior is inherent to cybersecurity.