Biblio
Internet of Thing (IoT) provide services by linking the different platform devices. They have the limitation in providing intelligent service. The IoT devices are heterogeneous which includes wireless sensors to less resource constrained devices. These devices are prone to hardware/software and network attacks. If not properly secured, it may lead to security issues like privacy and confidentiality. To resolve the above problem, an Intelligent Security Framework for IoT Devices is proposed in this paper. The proposed method is made up of (1) the light weight Asymmetric cryptography for securing the End-To-End devices which protects the IoT service gateway and the low power sensor nodes and (2) implements Lattice-based cryptography for securing the Broker devices/Gateway and the cloud services. The proposed architecture implements Asymmetric Key Encryption to share session key between the nodes and then uses this session key for message transfer This protects the system from Distributed Denial of Service Attacks, eavesdropping and Quantum algorithm attacks. The proposed protocol uses the unique Device ID of the sensors to generate key pair to establish mutual authentication between Devices and Services. Finally, the Mutual authentication mechanism is implemented in the gateway.
Due to the increasing threat of network attacks, Firewall has become crucial elements in network security, and have been widely deployed in most businesses and institutions for securing private networks. The function of a firewall is to examine each packet that passes through it and decide whether to letting them pass or halting them based on preconfigured rules and policies, so firewall now is the first defense line against cyber attacks. However most of people doesn't know how firewall works, and the most users of windows operating system doesn't know how to use the windows embedded firewall. This paper explains how firewall works, firewalls types, and all you need to know about firewall policies, then presents a novel application (QudsWall) developed by authors that manages windows embedded firewall and make it easy to use.
Honeypot systems are an effective method for defending production systems from security breaches and to gain detailed information about attackers' motivation, tactics, software and infrastructure. In this paper we present how different types of honeypots can be employed to gain valuable information about attacks and attackers, and also outline new and innovative possibilities for future research.
Recent findings have shown that network and system attacks in Software-Defined Networks (SDNs) have been caused by malicious network applications that misuse APIs in an SDN controller. Such attacks can both crash the controller and change the internal data structure in the controller, causing serious damage to the infrastructure of SDN-based networks. To address this critical security issue, we introduce a security framework called AEGIS to prevent controller APIs from being misused by malicious network applications. Through the run-time verification of API calls, AEGIS performs a fine-grained access control for important controller APIs that can be misused by malicious applications. The usage of API calls is verified in real time by sophisticated security access rules that are defined based on the relationships between applications and data in the SDN controller. We also present a prototypical implementation of AEGIS and demonstrate its effectiveness and efficiency by performing six different controller attacks including new attacks we have recently discovered.
Intrusion Detection Systems (IDSs) are an important defense tool against the sophisticated and ever-growing network attacks. These systems need to be evaluated against high quality datasets for correctly assessing their usefulness and comparing their performance. We present an Intrusion Detection Dataset Toolkit (ID2T) for the creation of labeled datasets containing user defined synthetic attacks. The architecture of the toolkit is provided for examination and the example of an injected attack, in real network traffic, is visualized and analyzed. We further discuss the ability of the toolkit of creating realistic synthetic attacks of high quality and low bias.
We introduce a cloud-enabled defense mechanism for Internet services against network and computational Distributed Denial-of-Service (DDoS) attacks. Our approach performs selective server replication and intelligent client re-assignment, turning victim servers into moving targets for attack isolation. We introduce a novel system architecture that leverages a "shuffling" mechanism to compute the optimal re-assignment strategy for clients on attacked servers, effectively separating benign clients from even sophisticated adversaries that persistently follow the moving targets. We introduce a family of algorithms to optimize the runtime client-to-server re-assignment plans and minimize the number of shuffles to achieve attack mitigation. The proposed shuffling-based moving target mechanism enables effective attack containment using fewer resources than attack dilution strategies using pure server expansion. Our simulations and proof-of-concept prototype using Amazon EC2 [1] demonstrate that we can successfully mitigate large-scale DDoS attacks in a small number of shuffles, each of which incurs a few seconds of user-perceived latency.
Port hopping is a typical moving target defense, which constantly changes service port number to thwart reconnaissance attack. It is effective in hiding service identities and confusing potential attackers, but it is still unknown how effective port hopping is and under what circumstances it is a viable proactive defense because the existed works are limited and they usually discuss only a few parameters and give some empirical studies. This paper introduces urn model and quantifies the likelihood of attacker success in terms of the port pool size, number of probes, number of vulnerable services, and hopping frequency. Theoretical analysis shows that port hopping is an effective and promising proactive defense technology in thwarting network attacks.