Visible to the public Biblio

Filters: Keyword is network attacks  [Clear All Filters]
2021-09-21
Brzezinski Meyer, Maria Laura, Labit, Yann.  2020.  Combining Machine Learning and Behavior Analysis Techniques for Network Security. 2020 International Conference on Information Networking (ICOIN). :580–583.
Network traffic attacks are increasingly common and varied, this is a big problem especially when the target network is centralized. The creation of IDS (Intrusion Detection Systems) capable of detecting various types of attacks is necessary. Machine learning algorithms are widely used in the classification of data, bringing a good result in the area of computer networks. In addition, the analysis of entropy and distance between data sets are also very effective in detecting anomalies. However, each technique has its limitations, so this work aims to study their combination in order to improve their performance and create a new intrusion detection system capable of well detect some of the most common attacks. Reliability indices will be used as metrics to the combination decision and they will be updated in each new dataset according to the decision made earlier.
2021-03-04
Hashemi, M. J., Keller, E..  2020.  Enhancing Robustness Against Adversarial Examples in Network Intrusion Detection Systems. 2020 IEEE Conference on Network Function Virtualization and Software Defined Networks (NFV-SDN). :37—43.

The increase of cyber attacks in both the numbers and varieties in recent years demands to build a more sophisticated network intrusion detection system (NIDS). These NIDS perform better when they can monitor all the traffic traversing through the network like when being deployed on a Software-Defined Network (SDN). Because of the inability to detect zero-day attacks, signature-based NIDS which were traditionally used for detecting malicious traffic are beginning to get replaced by anomaly-based NIDS built on neural networks. However, recently it has been shown that such NIDS have their own drawback namely being vulnerable to the adversarial example attack. Moreover, they were mostly evaluated on the old datasets which don't represent the variety of attacks network systems might face these days. In this paper, we present Reconstruction from Partial Observation (RePO) as a new mechanism to build an NIDS with the help of denoising autoencoders capable of detecting different types of network attacks in a low false alert setting with an enhanced robustness against adversarial example attack. Our evaluation conducted on a dataset with a variety of network attacks shows denoising autoencoders can improve detection of malicious traffic by up to 29% in a normal setting and by up to 45% in an adversarial setting compared to other recently proposed anomaly detectors.

2021-02-16
Karmakar, K. K., Varadharajan, V., Tupakula, U., Hitchens, M..  2020.  Towards a Dynamic Policy Enhanced Integrated Security Architecture for SDN Infrastructure. NOMS 2020 - 2020 IEEE/IFIP Network Operations and Management Symposium. :1—9.

Enterprise networks are increasingly moving towards Software Defined Networking, which is becoming a major trend in the networking arena. With the increased popularity of SDN, there is a greater need for security measures for protecting the enterprise networks. This paper focuses on the design and implementation of an integrated security architecture for SDN based enterprise networks. The integrated security architecture uses a policy-based approach to coordinate different security mechanisms to detect and counteract a range of security attacks in the SDN. A distinguishing characteristic of the proposed architecture is its ability to deal with dynamic changes in the security attacks as well as changes in trust associated with the network devices in the infrastructure. The adaptability of the proposed architecture to dynamic changes is achieved by having feedback between the various security components/mechanisms in the architecture and managing them using a dynamic policy framework. The paper describes the prototype implementation of the proposed architecture and presents security and performance analysis for different attack scenarios. We believe that the proposed integrated security architecture provides a significant step towards achieving a secure SDN for enterprises.

2021-01-25
Stan, O., Bitton, R., Ezrets, M., Dadon, M., Inokuchi, M., Yoshinobu, O., Tomohiko, Y., Elovici, Y., Shabtai, A..  2020.  Extending Attack Graphs to Represent Cyber-Attacks in Communication Protocols and Modern IT Networks. IEEE Transactions on Dependable and Secure Computing. :1–1.
An attack graph is a method used to enumerate the possible paths that an attacker can take in the organizational network. MulVAL is a known open-source framework used to automatically generate attack graphs. MulVAL's default modeling has two main shortcomings. First, it lacks the ability to represent network protocol vulnerabilities, and thus it cannot be used to model common network attacks, such as ARP poisoning. Second, it does not support advanced types of communication, such as wireless and bus communication, and thus it cannot be used to model cyber-attacks on networks that include IoT devices or industrial components. In this paper, we present an extended network security model for MulVAL that: (1) considers the physical network topology, (2) supports short-range communication protocols, (3) models vulnerabilities in the design of network protocols, and (4) models specific industrial communication architectures. Using the proposed extensions, we were able to model multiple attack techniques including: spoofing, man-in-the-middle, and denial of service attacks, as well as attacks on advanced types of communication. We demonstrate the proposed model in a testbed which implements a simplified network architecture comprised of both IT and industrial components
2021-01-22
Zhang, H., Liu, H., Liang, J., Li, T., Geng, L., Liu, Y., Chen, S..  2020.  Defense Against Advanced Persistent Threats: Optimal Network Security Hardening Using Multi-stage Maze Network Game. 2020 IEEE Symposium on Computers and Communications (ISCC). :1—6.

Advanced Persistent Threat (APT) is a stealthy, continuous and sophisticated method of network attacks, which can cause serious privacy leakage and millions of dollars losses. In this paper, we introduce a new game-theoretic framework of the interaction between a defender who uses limited Security Resources(SRs) to harden network and an attacker who adopts a multi-stage plan to attack the network. The game model is derived from Stackelberg games called a Multi-stage Maze Network Game (M2NG) in which the characteristics of APT are fully considered. The possible plans of the attacker are compactly represented using attack graphs(AGs), but the compact representation of the attacker's strategies presents a computational challenge and reaching the Nash Equilibrium(NE) is NP-hard. We present a method that first translates AGs into Markov Decision Process(MDP) and then achieves the optimal SRs allocation using the policy hill-climbing(PHC) algorithm. Finally, we present an empirical evaluation of the model and analyze the scalability and sensitivity of the algorithm. Simulation results exhibit that our proposed reinforcement learning-based SRs allocation is feasible and efficient.

2021-01-11
Cheng, Z., Beshley, M., Beshley, H., Kochan, O., Urikova, O..  2020.  Development of Deep Packet Inspection System for Network Traffic Analysis and Intrusion Detection. 2020 IEEE 15th International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering (TCSET). :877–881.
One of the most important issues in the development of the Internet of Things (IoT) is network security. The deep packet inspection (DPI) is a promising technology that helps to detection and protection against network attacks. The DPI software system for IoT is developed in this paper. The system for monitoring and analyzing IoT traffic to detect anomalies and identify attacks based on Hurst parameter is proposed. This system makes it possible to determine the Hurst flow parameter at different intervals of observation. This system can be installed on a network provider to use more effectively the bandwidth.
2020-12-28
Menaka, R., Mathana, J. M., Dhanagopal, R., Sundarambal, B..  2020.  Performance Evaluation of DSR Protocol in MANET Untrustworthy Environment. 2020 6th International Conference on Advanced Computing and Communication Systems (ICACCS). :1049—1052.

In the Mobile Ad hoc Network, the entire nodes taken as routers and contribute transmission when the nodes are not in the range of transmission for the senders. Directing conventions for the ad hoc systems are intended for the indisposed system setting, on the supposition that all the hubs in the system are reliable. Dependability of the directing convention is endangered in the genuine setting as systems are assaulted by pernicious hubs which regularly will in general upset the correspondence. Right now, it is proposed to contemplate the exhibition of the DSR convention under deceitful conditions. Another strategy is proposed to recognize untrue nodes dependent on the RREQ control parcel arrangement.

2020-10-19
Peng, Ruxiang, Li, Weishi, Yang, Tao, Huafeng, Kong.  2019.  An Internet of Vehicles Intrusion Detection System Based on a Convolutional Neural Network. 2019 IEEE Intl Conf on Parallel Distributed Processing with Applications, Big Data Cloud Computing, Sustainable Computing Communications, Social Computing Networking (ISPA/BDCloud/SocialCom/SustainCom). :1595–1599.
With the continuous development of the Internet of Vehicles, vehicles are no longer isolated nodes, but become a node in the car network. The open Internet will introduce traditional security issues into the Internet of Things. In order to ensure the safety of the networked cars, we hope to set up an intrusion detection system (IDS) on the vehicle terminal to detect and intercept network attacks. In our work, we designed an intrusion detection system for the Internet of Vehicles based on a convolutional neural network, which can run in a low-powered embedded vehicle terminal to monitor the data in the car network in real time. Moreover, for the case of packet encryption in some car networks, we have also designed a separate version for intrusion detection by analyzing the packet header. Experiments have shown that our system can guarantee high accuracy detection at low latency for attack traffic.
2020-10-16
Leon, Diego, Mayorga, Franklin, Vargas, Javier, Toasa, Renato, Guevara, David.  2018.  Using of an anonymous communication in e-government services: In the prevention of passive attacks on a network. 2018 13th Iberian Conference on Information Systems and Technologies (CISTI). :1—4.

Nowadays citizens live in a world where communication technologies offer opportunities for new interactions between people and society. Clearly, e-government is changing the way citizens relate to their government, moving the interaction of physical environment and management towards digital participation. Therefore, it is necessary for e-government to have procedures in place to prevent and lessen the negative impact of an attack or intrusion by third parties. In this research work, he focuses on the implementation of anonymous communication in a proof of concept application called “Delta”, whose function is to allow auctions and offers of products, thus marking the basis for future implementations in e-government services.

2020-09-04
Velan, Petr, Husák, Martin, Tovarňák, Daniel.  2018.  Rapid prototyping of flow-based detection methods using complex event processing. NOMS 2018 - 2018 IEEE/IFIP Network Operations and Management Symposium. :1—3.
Detection of network attacks is the first step to network security. Many different methods for attack detection were proposed in the past. However, descriptions of these methods are often not complete and it is difficult to verify that the actual implementation matches the description. In this demo paper, we propose to use Complex Event Processing (CEP) for developing detection methods based on network flows. By writing the detection methods in an Event Processing Language (EPL), we can address the above-mentioned problems. The SQL-like syntax of most EPLs is easily readable so the detection method is self-documented. Moreover, it is directly executable in the CEP system, which eliminates inconsistencies between documentation and implementation. The demo will show a running example of a multi-stage HTTP brute force attack detection using Esper and its EPL.
2020-08-28
Jia, Ziyi, Wu, Chensi, Zhang, Yuqing.  2019.  Research on the Destructive Capability Metrics of Common Network Attacks. 2019 IEEE SmartWorld, Ubiquitous Intelligence Computing, Advanced Trusted Computing, Scalable Computing Communications, Cloud Big Data Computing, Internet of People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI). :1419—1424.

An improved algorithm of the Analytic Hierarchy Process (AHP) is proposed in this paper, which is realized by constructing an improved judgment matrix. Specifically, rough set theory is used in the algorithm to calculate the weight of the network metric data, and then the improved AHP algorithm nine-point systemic is structured, finally, an improved AHP judgment matrix is constructed. By performing an AHP operation on the improved judgment matrix, the weight of the improved network metric data can be obtained. If only the rough set theory is applied to process the network index data, the objective factors would dominate the whole process. If the improved algorithm of AHP is used to integrate the expert score into the process of measurement, then the combination of subjective factors and objective factors can be realized. Based on the aforementioned theory, a new network attack metrics system is proposed in this paper, which uses a metric structure based on "attack type-attack attribute-attack atomic operation-attack metrics", in which the metric process of attack attribute adopts AHP. The metrics of the system are comprehensive, given their judgment of frequent attacks is universal. The experiment was verified by an experiment of a common attack Smurf. The experimental results show the effectiveness and applicability of the proposed measurement system.

Mulinka, Pavol, Casas, Pedro, Vanerio, Juan.  2019.  Continuous and Adaptive Learning over Big Streaming Data for Network Security. 2019 IEEE 8th International Conference on Cloud Networking (CloudNet). :1—4.

Continuous and adaptive learning is an effective learning approach when dealing with highly dynamic and changing scenarios, where concept drift often happens. In a continuous, stream or adaptive learning setup, new measurements arrive continuously and there are no boundaries for learning, meaning that the learning model has to decide how and when to (re)learn from these new data constantly. We address the problem of adaptive and continual learning for network security, building dynamic models to detect network attacks in real network traffic. The combination of fast and big network measurements data with the re-training paradigm of adaptive learning imposes complex challenges in terms of data processing speed, which we tackle by relying on big data platforms for parallel stream processing. We build and benchmark different adaptive learning models on top of a novel big data analytics platform for network traffic monitoring and analysis tasks, and show that high speed-up computations (as high as × 6) can be achieved by parallelizing off-the-shelf stream learning approaches.

2020-07-27
Babay, Amy, Tantillo, Thomas, Aron, Trevor, Platania, Marco, Amir, Yair.  2018.  Network-Attack-Resilient Intrusion-Tolerant SCADA for the Power Grid. 2018 48th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN). :255–266.
As key components of the power grid infrastructure, Supervisory Control and Data Acquisition (SCADA) systems are likely to be targeted by nation-state-level attackers willing to invest considerable resources to disrupt the power grid. We present Spire, the first intrusion-tolerant SCADA system that is resilient to both system-level compromises and sophisticated network-level attacks and compromises. We develop a novel architecture that distributes the SCADA system management across three or more active sites to ensure continuous availability in the presence of simultaneous intrusions and network attacks. A wide-area deployment of Spire, using two control centers and two data centers spanning 250 miles, delivered nearly 99.999% of all SCADA updates initiated over a 30-hour period within 100ms. This demonstrates that Spire can meet the latency requirements of SCADA for the power grid.
2020-03-12
Vieira, Leandro, Santos, Leonel, Gon\c calves, Ramiro, Rabadão, Carlos.  2019.  Identifying Attack Signatures for the Internet of Things: An IP Flow Based Approach. 2019 14th Iberian Conference on Information Systems and Technologies (CISTI). :1–7.

At the time of more and more devices being connected to the internet, personal and sensitive information is going around the network more than ever. Thus, security and privacy regarding IoT communications, devices, and data are a concern due to the diversity of the devices and protocols used. Since traditional security mechanisms cannot always be adequate due to the heterogeneity and resource limitations of IoT devices, we conclude that there are still several improvements to be made to the 2nd line of defense mechanisms like Intrusion Detection Systems. Using a collection of IP flows, we can monitor the network and identify properties of the data that goes in and out. Since network flows collection have a smaller footprint than packet capturing, it makes it a better choice towards the Internet of Things networks. This paper aims to study IP flow properties of certain network attacks, with the goal of identifying an attack signature only by observing those properties.

2020-02-18
Dishington, Cole, Sharma, Dilli P., Kim, Dong Seong, Cho, Jin-Hee, Moore, Terrence J., Nelson, Frederica F..  2019.  Security and Performance Assessment of IP Multiplexing Moving Target Defence in Software Defined Networks. 2019 18th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/13th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :288–295.

With the interconnection of services and customers, network attacks are capable of large amounts of damage. Flexible Random Virtual IP Multiplexing (FRVM) is a Moving Target Defence (MTD) technique that protects against reconnaissance and access with address mutation and multiplexing. Security techniques must be trusted, however, FRVM, along with past MTD techniques, have gaps in realistic evaluation and thorough analysis of security and performance. FRVM, and two comparison techniques, were deployed on a virtualised network to demonstrate FRVM's security and performance trade-offs. The key results include the security and performance trade-offs of address multiplexing and address mutation. The security benefit of IP address multiplexing is much greater than its performance overhead, deployed on top of address mutation. Frequent address mutation significantly increases an attackers' network scan durations as well as effectively obfuscating and hiding network configurations.

2020-01-21
Li, Chunlei, Wu, Qian, Li, Hewu, Zhou, Jiang.  2019.  SDN-Ti: A General Solution Based on SDN to Attacker Traceback and Identification in IPv6 Networks. ICC 2019 - 2019 IEEE International Conference on Communications (ICC). :1–7.

Network attacks have become a growing threat to the current Internet. For the enhancement of network security and accountability, it is urgent to find the origin and identity of the adversary who misbehaves in the network. Some studies focus on embedding users' identities into IPv6 addresses, but such design cannot support the Stateless Address Autoconfiguration (SLAAC) protocol which is widely deployed nowadays. In this paper, we propose SDN-Ti, a general solution to traceback and identification for attackers in IPv6 networks based on Software Defined Network (SDN). In our proposal, the SDN switch performs a translation between the source IPv6 address of the packet and its trusted ID-encoded address generated by the SDN controller. The network administrator can effectively identify the attacker by parsing the malicious packets when the attack incident happens. Our solution not only avoids the heavy storage overhead and time synchronism problems, but also supports multiple IPv6 address assignment scenarios. What's more, SDN-Ti does not require any modification on the end device, hence can be easily deployed. We implement SDN-Ti prototype and evaluate it in a real IPv6 testbed. Experiment results show that our solution only brings very little extra performance cost, and it shows considerable performance in terms of latency, CPU consumption and packet loss compared to the normal forwarding method. The results indicate that SDN-Ti is feasible to be deployed in practice with a large number of users.

Appana, Pranavi, Sun, Xiaoyan, Cheng, Yuan.  2019.  What To Do First: Ranking The Mission Impact Graph for Effective Mission Assurance. 2019 International Conference on Computing, Networking and Communications (ICNC). :567–571.

Network attacks continue to pose threats to missions in cyber space. To prevent critical missions from getting impacted or minimize the possibility of mission impact, active cyber defense is very important. Mission impact graph is a graphical model that enables mission impact assessment and shows how missions can be possibly impacted by cyber attacks. Although the mission impact graph provides valuable information, it is still very difficult for human analysts to comprehend due to its size and complexity. Especially when given limited resources, human analysts cannot easily decide which security measures to take first with respect to mission assurance. Therefore, this paper proposes to apply a ranking algorithm towards the mission impact graph so that the huge amount of information can be prioritized. The actionable conditions that can be managed by security admins are ranked with numeric values. The rank enables efficient utilization of limited resources and provides guidance for taking security countermeasures.

2020-01-13
Zegzhda, Dmitry, Lavrova, Daria, Khushkeev, Aleksei.  2019.  Detection of information security breaches in distributed control systems based on values prediction of multidimensional time series. 2019 IEEE International Conference on Industrial Cyber Physical Systems (ICPS). :780–784.
Proposed an approach for information security breaches detection in distributed control systems based on prediction of multidimensional time series formed of sensor and actuator data.
2019-12-18
Haghighat, Mohammad Hashem, Li, Jun.  2018.  Edmund: Entropy Based Attack Detection and Mitigation Engine Using Netflow Data. Proceedings of the 8th International Conference on Communication and Network Security. :1–6.
Dozens of signature and anomaly based solutions have been proposed to detect malicious activities in computer networks. However, the number of successful attacks are increasing every day. In this paper, we developed a novel entropy based technique, called Edmund, to detect and mitigate Network attacks. While analyzing full payload network traffic was not recommended due to users' privacy, Edmund used netflow data to detect abnormal behavior. The experimental results showed that Edmund was able to highly accurate detect (around 95%) different application, transport, and network layers attacks. It could identify more than 100K malicious flows raised by 1168 different attackers in our campus. Identifying the attackers, is a great feature, which enables the network administrators to mitigate DDoS effects during the attack time.
2019-07-01
Perez, R. Lopez, Adamsky, F., Soua, R., Engel, T..  2018.  Machine Learning for Reliable Network Attack Detection in SCADA Systems. 2018 17th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/ 12th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :633–638.

Critical Infrastructures (CIs) use Supervisory Control And Data Acquisition (SCADA) systems for remote control and monitoring. Sophisticated security measures are needed to address malicious intrusions, which are steadily increasing in number and variety due to the massive spread of connectivity and standardisation of open SCADA protocols. Traditional Intrusion Detection Systems (IDSs) cannot detect attacks that are not already present in their databases. Therefore, in this paper, we assess Machine Learning (ML) for intrusion detection in SCADA systems using a real data set collected from a gas pipeline system and provided by the Mississippi State University (MSU). The contribution of this paper is two-fold: 1) The evaluation of four techniques for missing data estimation and two techniques for data normalization, 2) The performances of Support Vector Machine (SVM), and Random Forest (RF) are assessed in terms of accuracy, precision, recall and F1score for intrusion detection. Two cases are differentiated: binary and categorical classifications. Our experiments reveal that RF detect intrusions effectively, with an F1score of respectively \textbackslashtextgreater 99%.

2019-05-01
Berjab, N., Le, H. H., Yu, C., Kuo, S., Yokota, H..  2018.  Hierarchical Abnormal-Node Detection Using Fuzzy Logic for ECA Rule-Based Wireless Sensor Networks. 2018 IEEE 23rd Pacific Rim International Symposium on Dependable Computing (PRDC). :289-298.

The Internet of things (IoT) is a distributed, networked system composed of many embedded sensor devices. Unfortunately, these devices are resource constrained and susceptible to malicious data-integrity attacks and failures, leading to unreliability and sometimes to major failure of parts of the entire system. Intrusion detection and failure handling are essential requirements for IoT security. Nevertheless, as far as we know, the area of data-integrity detection for IoT has yet to receive much attention. Most previous intrusion-detection methods proposed for IoT, particularly for wireless sensor networks (WSNs), focus only on specific types of network attacks. Moreover, these approaches usually rely on using precise values to specify abnormality thresholds. However, sensor readings are often imprecise and crisp threshold values are inappropriate. To guarantee a lightweight, dependable monitoring system, we propose a novel hierarchical framework for detecting abnormal nodes in WSNs. The proposed approach uses fuzzy logic in event-condition-action (ECA) rule-based WSNs to detect malicious nodes, while also considering failed nodes. The spatiotemporal semantics of heterogeneous sensor readings are considered in the decision process to distinguish malicious data from other anomalies. Following our experiments with the proposed framework, we stress the significance of considering the sensor correlations to achieve detection accuracy, which has been neglected in previous studies. Our experiments using real-world sensor data demonstrate that our approach can provide high detection accuracy with low false-alarm rates. We also show that our approach performs well when compared to two well-known classification algorithms.

2019-03-04
Zhu, Z., Jiang, R., Jia, Y., Xu, J., Li, A..  2018.  Cyber Security Knowledge Graph Based Cyber Attack Attribution Framework for Space-ground Integration Information Network. 2018 IEEE 18th International Conference on Communication Technology (ICCT). :870–874.
Comparing with the traditional Internet, the space-ground integration information network has more complicated topology, wider coverage area and is more difficult to find the source of attacks. In this paper, a cyber attack attribution framework is proposed to trace the attack source in space-ground integration information network. First, we constructs a cyber security knowledge graph for space-ground integration information network. An automated attributing framework for cyber-attack is proposed. It attributes the source of the attack by querying the cyber security knowledge graph we constructed. Experiments show that the proposed framework can attribute network attacks simply, effectively, and automatically.
2019-02-22
Mulinka, Pavol, Casas, Pedro.  2018.  Stream-Based Machine Learning for Network Security and Anomaly Detection. Proceedings of the 2018 Workshop on Big Data Analytics and Machine Learning for Data Communication Networks. :1-7.

Data Stream Machine Learning is rapidly gaining popularity within the network monitoring community as the big data produced by network devices and end-user terminals goes beyond the memory constraints of standard monitoring equipment. Critical network monitoring applications such as the detection of anomalies, network attacks and intrusions, require fast and continuous mechanisms for on-line analysis of data streams. In this paper we consider a stream-based machine learning approach for network security and anomaly detection, applying and evaluating multiple machine learning algorithms in the analysis of continuously evolving network data streams. The continuous evolution of the data stream analysis algorithms coming from the data stream mining domain, as well as the multiple evaluation approaches conceived for benchmarking such kind of algorithms makes it difficult to choose the appropriate machine learning model. Results of the different approaches may significantly differ and it is crucial to determine which approach reflects the algorithm performance the best. We therefore compare and analyze the results from the most recent evaluation approaches for sequential data on commonly used batch-based machine learning algorithms and their corresponding stream-based extensions, for the specific problem of on-line network security and anomaly detection. Similar to our previous findings when dealing with off-line machine learning approaches for network security and anomaly detection, our results suggest that adaptive random forests and stochastic gradient descent models are able to keep up with important concept drifts in the underlying network data streams, by keeping high accuracy with continuous re-training at concept drift detection times.

2019-02-08
Zou, Z., Wang, D., Yang, H., Hou, Y., Yang, Y., Xu, W..  2018.  Research on Risk Assessment Technology of Industrial Control System Based on Attack Graph. 2018 IEEE 3rd Advanced Information Technology, Electronic and Automation Control Conference (IAEAC). :2420-2423.

In order to evaluate the network security risks and implement effective defenses in industrial control system, a risk assessment method for industrial control systems based on attack graphs is proposed. Use the concept of network security elements to translate network attacks into network state migration problems and build an industrial control network attack graph model. In view of the current subjective evaluation of expert experience, the atomic attack probability assignment method and the CVSS evaluation system were introduced to evaluate the security status of the industrial control system. Finally, taking the centralized control system of the thermal power plant as the experimental background, the case analysis is performed. The experimental results show that the method can comprehensively analyze the potential safety hazards in the industrial control system and provide basis for the safety management personnel to take effective defense measures.

2018-11-19
Nasr, E., Shahrour, I..  2017.  Evaluating Wireless Network Vulnerabilities and Attack Paths in Smart Grid Comprehensive Analysis and Implementation. 2017 Sensors Networks Smart and Emerging Technologies (SENSET). :1–4.

Quantifying vulnerability and security levels for smart grid diversified link of networks have been a challenging task for a long period of time. Security experts and network administrators used to act based on their proficiencies and practices to mitigate network attacks rather than objective metrics and models. This paper uses the Markov Chain Model [1] to evaluate quantitatively the vulnerabilities associated to the 802.11 Wi-Fi network in a smart grid. Administrator can now assess the level of severity of potential attacks based on determining the probability density of the successive states and thus, providing the corresponding security measures. This model is based on the observed vulnerabilities provided by the Common Vulnerabilities and Exposures (CVE) database explored by MITRE [2] to calculate the Markov processes (states) transitions probabilities and thus, deducing the vulnerability level of the entire attack paths in an attack graph. Cumulative probabilities referring to high vulnerability level in a specific attack path will lead the system administrator to apply appropriate security measures a priori to potential attacks occurrence.