Biblio
Wireless networks in buildings suffer from congestion, interference, security and safety concerns, restricted propagation and poor in-door location accuracy. The Internet of Radio-Light (IoRL) project develops a safer, more secure, customizable and intelligent building network that reliably delivers increased throughput (greater than lOGbps) from access points pervasively located within buildings, whilst minimizing interference and harmful EM exposure and providing location accuracy of less than 10 cm. It thereby shows how to solve the problem of broadband wireless access in buildings and promotes the establishment of a global standard in ITU.
Software Defined Networking (SDN) stands to transmute our modern networks and data centers, opening them up into highly agile frameworks that can be reconfigured depending on the requirement. Denial of Service (DoS) attacks are considered as one of the most destructive attacks. This paper, is about DoS attack detection and mitigation using SDN. DoS attack can minimize the bandwidth utilization, leaving the network unavailable for legitimate traffic. To provide a solution to the problem, concept of performance aware Software Defined Networking is used which involves real time network monitoring using sFlow as a visibility protocol. So, OpenFlow along with sFlow is used as an application to fight DoS attacks. Our analysis and results demonstrate that using this technique, DoS attacks are successfully defended implying that SDN has promising potential to detect and mitigate DoS attacks.
Software Defined Networks (SDNs) is a new networking paradigm that has gained a lot of attention in recent years especially in implementing data center networks and in providing efficient security solutions. The popularity of SDN and its attractive security features suggest that it can be used in the context of smart grid systems to address many of the vulnerabilities and security problems facing such critical infrastructure systems. This paper studies the impact of different cyber attacks that can target smart grid communication network which is implemented as a software defined network on the operation of the smart grid system in general. In particular, we perform different attack scenarios including DDoS attacks, location highjacking and link overloading against SDN networks of different controller types that include POX, Floodlight and RYU. Our experiments were carried out using the mininet simulator. The experiments show that SDN-enabled smartgrid systems are vulnerable to different types of attacks.
Advances in nanotechnology, large scale computing and communications infrastructure, coupled with recent progress in big data analytics, have enabled linking several billion devices to the Internet. These devices provide unprecedented automation, cognitive capabilities, and situational awareness. This new ecosystem–termed as the Internet-of-Things (IoT)–also provides many entry points into the network through the gadgets that connect to the Internet, making security of IoT systems a complex problem. In this position paper, we argue that in order to build a safer IoT system, we need a radically new approach to security. We propose a new security framework that draws ideas from software defined networks (SDN), and data analytics techniques; this framework provides dynamic policy enforcements on every layer of the protocol stack and can adapt quickly to a diverse set of industry use-cases that IoT deployments cater to. Our proposal does not make any assumptions on the capabilities of the devices - it can work with already deployed as well as new types of devices, while also conforming to a service-centric architecture. Even though our focus is on industrial IoT systems, the ideas presented here are applicable to IoT used in a wide array of applications. The goal of this position paper is to initiate a dialogue among standardization bodies and security experts to help raise awareness about network-centric approaches to IoT security.
Servers in a network are typically assigned a static identity. Static assignment of identities is a cornerstone for adversaries in finding targets. Moving Target Defense (MTD) mutates the environment to increase unpredictability for an attacker. On another side, Software Defined Networks (SDN) facilitate a global view of a network through a central control point. The potential of SDN can not only make network management flexible and convenient, but it can also assist MTD to enhance attack surface obfuscation. In this paper, we propose an effective framework for the prevention, detection, and mitigation of flooding-based Denial of Service (DoS) attacks. Our framework includes a light-weight SDN assisted MTD strategy for network reconnaissance protection and an efficient approach for tackling DoS attacks using Software Defined-Internet Exchange Point (SD-IXP). To assess the effectiveness of the MTD strategy and DoS mitigation scheme, we set two different experiments. Our results confirm the effectiveness of our framework. With the MTD strategy in place, at maximum, barely 16% reconnaissance attempts were successful while the DoS attacks were accurately detected with false alarm rate as low as 7.1%.
Software Defined Networking (SDN) has proved to be a promising approach for creating next generation software based network ecosystems. It has provided us with a centralized network provision, a holistic management plane and a well-defined level of abstraction. But, at the same time brings forth new security and management challenges. Research in the field of SDN is primarily focused on reconfiguration, forwarding and network management issues. However in recent times the interest has moved to tackling security and maintenance issues. This work is based on providing a means to mitigate security challenges in an SDN environment from a DDoS attack based point of view. This paper introduces a Multi-Agent based intrusion prevention and mitigation architecture for SDN. Thus allowing networks to govern their behavior and take appropriate measures when the network is under attack. The architecture is evaluated against filter based intrusion prevention architectures to measure efficiency and resilience against DDoS attacks and false policy based attacks.
Software-Defined Networking (SDN) allows for fast reactions to security threats by dynamically enforcing simple forwarding rules as counter-measures. However, in classic SDN all the intelligence resides at the controller, with the switches only capable of performing stateless forwarding as ruled by the controller. It follows that the controller, in addition to network management and control duties, must collect and process any piece of information required to take advanced (stateful) forwarding decisions. This threatens both to overload the controller and to congest the control channel. On the other hand, stateful SDN represents a new concept, developed both to improve reactivity and to offload the controller and the control channel by delegating local treatments to the switches. In this paper, we adopt this stateful paradigm to protect end-hosts from Distributed Denial of Service (DDoS). We propose StateSec, a novel approach based on in-switch processing capabilities to detect and mitigate DDoS attacks. StateSec monitors packets matching configurable traffic features (e.g., IP src/dst, port src/dst) without resorting to the controller. By feeding an entropy-based algorithm with such monitoring features, StateSec detects and mitigates several threats such as (D)DoS and port scans with high accuracy. We implemented StateSec and compared it with a state-of-the-art approach to monitor traffic in SDN. We show that StateSec is more efficient: it achieves very accurate detection levels, limiting at the same time the control plane overhead.
Software Defined Networks (SDNs) have gained prominence recently due to their flexible management and superior configuration functionality of the underlying network. SDNs, with OpenFlow as their primary implementation, allow for the use of a centralised controller to drive the decision making for all the supported devices in the network and manage traffic through routing table changes for incoming flows. In conventional networks, machine learning has been shown to detect malicious intrusion, and classify attacks such as DoS, user to root, and probe attacks. In this work, we extend the use of machine learning to improve traffic tolerance for SDNs. To achieve this, we extend the functionality of the controller to include a resilience framework, ReSDN, that incorporates machine learning to be able to distinguish DoS attacks, focussing on a neptune attack for our experiments. Our model is trained using the MIT KDD 1999 dataset. The system is developed as a module on top of the POX controller platform and evaluated using the Mininet simulator.
Controllers for software defined networks (SDNs) are quickly maturing to offer network operators more intuitive programming frameworks and greater abstractions for network application development. Likewise, many security solutions now exist within SDN environments for detecting and blocking clients who violate network policies. However, many of these solutions stop at triggering the security measure and give little thought to amending it. As a consequence, once the violation is addressed, no clear path exists for reinstating the flagged client beyond having the network operator reset the controller or manually implement a state change via an external command. This presents a burden for the network and its clients and administrators. Hence, we present a security policy transition framework for revoking security measures in an SDN environment once said measures are activated.
The moving network target defense (MTD) based approach to security aims to design and develop capabilities to dynamically change the attack surfaces to make it more difficult for attackers to strike. One such capability is to dynamically change the IP addresses of subnetworks in unpredictable ways in an attempt to disrupt the ability of an attacker to collect the necessary reconnaissance information to launch successful attacks. In particular, Denial of Service (DoS) and worms represent examples of distributed attacks that can potentially propagate through networks very quickly, but could also be disrupted by MTD. Conversely, MTD are also disruptive to regular users. For example, when IP addresses are changed dynamically it is no longer effective to use DNS caches for IP address resolutions before any communication can be performed. In this work we take another approach. We note that the deployment of MTD could be triggered through the use of light-weight intrusion detection. We demonstrate that the neuro-evolution of augmented topologies algorithm (NEAT) has the capacity to construct detectors that operate on packet data and produce sparse topologies, hence are real-time in operation. Benchmarking under examples of DoS and worm attacks indicates that NEAT detectors can be constructed from relatively small amounts of data and detect attacks approx. 90% accuracy. Additional experiments with the open-ended evolution of code modules through genetic program teams provided detection rates approaching 100%. We believe that adopting such an approach to MTB a more specific deployment strategy that is less invasive to legitimate users, while disrupting the actions of malicious users.
prevent attackers from gaining control of the system using well established techniques such as; perimeter-based fire walls, redundancy and replications, and encryption. However, given sufficient time and resources, all these methods can be defeated. Moving Target Defense (MTD), is a defensive strategy that aims to reduce the need to continuously fight against attacks by disrupting attackers gain-loss balance. We present Mayflies, a bio-inspired generic MTD framework for distributed systems on virtualized cloud platforms. The framework enables systems designed to defend against attacks for their entire runtime to systems that avoid attacks in time intervals. We discuss the design, algorithms and the implementation of the framework prototype. We illustrate the prototype with a quorum-based Byzantime Fault Tolerant system and report the preliminary results.
Multimedia has been exponentially increasing as the biggest big data, which consist of video clips, images, and audio files. Processing and analyzing them on a cloud data center have become a preferred solution that can utilize the large pool of cloud resources to address the problems caused by the tremendous amount of unstructured multimedia data. However, there exist many challenges in processing multimedia big data on a cloud data center, such as multimedia data representation approach, an efficient networking model, and an estimation method for traffic patterns. The primary purpose of this article is to develop a novel tensor-based software-defined networking model on a cloud data center for multimedia big-data computation and communication. First, an overview of the proposed framework is provided, in which the functions of the representative modules are briefly illustrated. Then, three models,—forwarding tensor, control tensor, and transition tensor—are proposed for management of networking devices and prediction of network traffic patterns. Finally, two algorithms about single-mode and multimode tensor eigen-decomposition are developed, and the incremental method is employed for efficiently updating the generated eigen-vector and eigen-tensor. Experimental results reveal that the proposed framework is feasible and efficient to handle multimedia big data on a cloud data center.
Cellular networks play a dominant role in how we communicate. But, the current cellular architecture and protocols are overly complex. The 'control plane' protocol includes setting up explicit tunnels for every session and exchanging a large number of packets among the different entities (mobile device, base station, the packet gateways and mobility management) to ensure state is exchanged in a consistent manner. This limits scalability. As we evolve to having to support an increasing number of users, cell-sites (e.g., 5G) and the consequent mobility, and the incoming wave of IoT devices, a re-thinking of the architecture and control protocols is required. In this work we propose CleanG, a simplified software-based architecture for the Mobile Core Network (MCN) and a simplified control protocol for cellular networks. Network Function Virtualization enables dynamic management of capacity in the cloud to support the MCN of future cellular networks. We develop a simplified protocol that substantially reduces the number of control messages exchanged to support the various events, while retaining the current functionality expected from the network. CleanG, we believe will scale better and have lower latency.
This article is a summary description of the Cognitive Packet Network (CPN) which is an example both of a completely software defined network (SDN) and of a self-aware computer network (SAN) which has been completely implemented and used in numerous experiments. CPN is able to observe its own internal performance as well as the interfaces of the external systems that it interacts with, in order to modify its behaviour so as to adaptively achieve objectives, such as discovering services for its users, improving their Quality of Service (QoS), reduce its own energy consumption, compensate for components which fail or malfunction, detect and react to intrusions, and defend itself against attacks.
Software-Defined Networking (SDN) allows network capabilities and services to be managed through a central control point. Moving Target Defense (MTD) on the other hand, introduces a constantly adapting environment in order to delay or prevent attacks on a system. MTD is a use case where SDN can be leveraged in order to provide attack surface obfuscation. In this paper, we investigate how SDN can be used in some network-based MTD techniques. We first describe the advantages and disadvantages of these techniques, the potential countermeasures attackers could take to circumvent them, and the overhead of implementing MTD using SDN. Subsequently, we study the performance of the SDN-based MTD methods using Cisco's One Platform Kit and we show that they significantly increase the attacker's overheads.