Visible to the public Biblio

Filters: Keyword is Software Defined Networks  [Clear All Filters]
2023-02-17
SAHBI, Amina, JAIDI, Faouzi, BOUHOULA, Adel.  2022.  Artificial Intelligence for SDN Security: Analysis, Challenges and Approach Proposal. 2022 15th International Conference on Security of Information and Networks (SIN). :01–07.
The dynamic state of networks presents a challenge for the deployment of distributed applications and protocols. Ad-hoc schedules in the updating phase might lead to a lot of ambiguity and issues. By separating the control and data planes and centralizing control, Software Defined Networking (SDN) offers novel opportunities and remedies for these issues. However, software-based centralized architecture for distributed environments introduces significant challenges. Security is a main and crucial issue in SDN. This paper presents a deep study of the state-of-the-art of security challenges and solutions for the SDN paradigm. The conducted study helped us to propose a dynamic approach to efficiently detect different security violations and incidents caused by network updates including forwarding loop, forwarding black hole, link congestion, network policy violation, etc. Our solution relies on an intelligent approach based on the use of Machine Learning and Artificial Intelligence Algorithms.
Heseding, Hauke, Zitterbart, Martina.  2022.  ReCEIF: Reinforcement Learning-Controlled Effective Ingress Filtering. 2022 IEEE 47th Conference on Local Computer Networks (LCN). :106–113.
Volumetric Distributed Denial of Service attacks forcefully disrupt the availability of online services by congesting network links with arbitrary high-volume traffic. This brute force approach has collateral impact on the upstream network infrastructure, making early attack traffic removal a key objective. To reduce infrastructure load and maintain service availability, we introduce ReCEIF, a topology-independent mitigation strategy for early, rule-based ingress filtering leveraging deep reinforcement learning. ReCEIF utilizes hierarchical heavy hitters to monitor traffic distribution and detect subnets that are sending high-volume traffic. Deep reinforcement learning subsequently serves to refine hierarchical heavy hitters into effective filter rules that can be propagated upstream to discard traffic originating from attacking systems. Evaluating all filter rules requires only a single clock cycle when utilizing fast ternary content-addressable memory, which is commonly available in software defined networks. To outline the effectiveness of our approach, we conduct a comparative evaluation to reinforcement learning-based router throttling.
2021-11-29
Huang, Xuanbo, Xue, Kaiping, Xing, Yitao, Hu, Dingwen, Li, Ruidong, Sun, Qibin.  2020.  FSDM: Fast Recovery Saturation Attack Detection and Mitigation Framework in SDN. 2020 IEEE 17th International Conference on Mobile Ad Hoc and Sensor Systems (MASS). :329–337.
The whole Software-Defined Networking (SDN) system might be out of service when the control plane is overloaded by control plane saturation attacks. In this attack, a malicious host can manipulate massive table-miss packets to exhaust the control plane resources. Even though many studies have focused on this problem, systems still suffer from more influenced switches because of centralized mitigation policies, and long recovery delay because of the remaining attack flows. To solve these problems, we propose FSDM, a Fast recovery Saturation attack Detection and Mitigation framework. For detection, FSDM extracts the distribution of Control Channel Occupation Rate (CCOR) to detect the attack and locates the port that attackers come from. For mitigation, with the attacker's location and distributed Mitigation Agents, FSDM adopts different policies to migrate or block attack flows, which influences fewer switches and protects the control plane from resource exhaustion. Besides, to reduce the system recovery delay, FSDM equips a novel functional module called Force\_Checking, which enables the whole system to quickly clean up the remaining attack flows and recovery faster. Finally, we conducted extensive experiments, which show that, with the increasing of attack PPS (Packets Per Second), FSDM only suffers a minor recovery delay increase. Compared with traditional methods without cleaning up remaining flows, FSDM saves more than 81% of ping RTT under attack rate ranged from 1000 to 4000 PPS, and successfully reduced the delay of 87% of HTTP requests time under large attack rate ranged from 5000 to 30000 PPS.
2021-09-30
Zuo, Xinbin, Pang, Xue, Zhang, Pengping, Zhang, Junsan, Dong, Tao, Zhang, Peiying.  2020.  A Security-Aware Software-Defined IoT Network Architecture. 2020 IEEE Computing, Communications and IoT Applications (ComComAp). :1–5.
With the improvement of people's living standards, more and more network users access the network, including a large number of infrastructure, these devices constitute the Internet of things(IoT). With the rapid expansion of devices in the IoT, the data transmission between the IoT has become more complex, and the security issues are facing greater challenges. SDN as a mature network architecture, its security has been affirmed by the industry, it separates the data layer from the control layer, thus greatly improving the security of the network. In this paper, we apply the SDN to the IoT, and propose a IoT network architecture based on SDN. In this architecture, we not only make use of the security features of SDN, but also deploy different security modules in each layer of SDN to integrate, analyze and plan various data through the IoT, which undoubtedly improves the security performance of the network. In the end, we give a comprehensive introduction to the system and verify its performance.
2021-07-27
Nweke, Livinus Obiora, Wolthusen, Stephen D..  2020.  Resilience Analysis of Software-Defined Networks Using Queueing Networks. 2020 International Conference on Computing, Networking and Communications (ICNC). :536–542.
Software-Defined Networks (SDN) are being adopted widely and are also likely to be deployed as the infrastructure of systems with critical real-time properties such as Industrial Control Systems (ICS). This raises the question of what security and performance guarantees can be given for the data plane of such critical systems and whether any control plane actions will adversely affect these guarantees, particularly for quality of service in real-time systems. In this paper we study the existing literature on the analysis of SDN using queueing networks and show ways in which models need to be extended to study attacks that are based on arrival rates and service time distributions of flows in SDN.
2021-06-24
Ulrich, Jacob, Rieger, Craig, Grandio, Javier, Manic, Milos.  2020.  Cyber-Physical Architecture for Automated Responses (CyPhAAR) Using SDN in Adversarial OT Environments. 2020 Resilience Week (RWS). :55–63.
The ability to react to a malicious attack starts with high fidelity recognition, and with that, an agile response to the attack. The current Operational Technology (OT) systems for a critical infrastructure include an intrusion detection system (IDS), but the ability to adapt to an intrusion is a human initiated response. Orchestrators, which are coming of age in the financial sector and allow for levels of automated response, are not prevalent in the OT space. To evolve to such responses in the OT space, a tradeoff analysis is first needed. This tradeoff analysis should evaluate the mitigation benefits of responses versus the physical affects that result. Providing an informed and automated response decision. This paper presents a formulation of a novel tradeoff analysis and its use in advancing a cyber-physical architecture for automated responses (CyPhAAR).
2021-03-09
Lee, T., Chang, L., Syu, C..  2020.  Deep Learning Enabled Intrusion Detection and Prevention System over SDN Networks. 2020 IEEE International Conference on Communications Workshops (ICC Workshops). :1—6.

The Software Defined Network (SDN) provides higher programmable functionality for network configuration and management dynamically. Moreover, SDN introduces a centralized management approach by dividing the network into control and data planes. In this paper, we introduce a deep learning enabled intrusion detection and prevention system (DL-IDPS) to prevent secure shell (SSH) brute-force attacks and distributed denial-of-service (DDoS) attacks in SDN. The packet length in SDN switch has been collected as a sequence for deep learning models to identify anomalous and malicious packets. Four deep learning models, including Multilayer Perceptron (MLP), Convolutional Neural Network (CNN), Long Short-Term Memory (LSTM) and Stacked Auto-encoder (SAE), are implemented and compared for the proposed DL-IDPS. The experimental results show that the proposed MLP based DL-IDPS has the highest accuracy which can achieve nearly 99% and 100% accuracy to prevent SSH Brute-force and DDoS attacks, respectively.

2021-02-22
Rivera, S., Fei, Z., Griffioen, J..  2020.  POLANCO: Enforcing Natural Language Network Policies. 2020 29th International Conference on Computer Communications and Networks (ICCCN). :1–9.
Network policies govern the use of an institution's networks, and are usually written in a high-level human-readable natural language. Normally these policies are enforced by low-level, technically detailed network configurations. The translation from network policies into network configurations is a tedious, manual and error-prone process. To address this issue, we propose a new intermediate language called POlicy LANguage for Campus Operations (POLANCO), which is a human-readable network policy definition language intended to approximate natural language. Because POLANCO is a high-level language, the translation from natural language policies to POLANCO is straightforward. Despite being a high-level human readable language, POLANCO can be used to express network policies in a technically precise way so that policies written in POLANCO can be automatically translated into a set of software defined networking (SDN) rules and actions that enforce the policies. Moreover, POLANCO is capable of incorporating information about the current network state, reacting to changes in the network and adjusting SDN rules to ensure network policies continue to be enforced correctly. We present policy examples found on various public university websites and show how they can be written as simplified human-readable statements using POLANCO and how they can be automatically translated into SDN rules that correctly enforce these policies.
2021-02-16
Sumantra, I., Gandhi, S. Indira.  2020.  DDoS attack Detection and Mitigation in Software Defined Networks. 2020 International Conference on System, Computation, Automation and Networking (ICSCAN). :1—5.
This work aims to formulate an effective scheme which can detect and mitigate of Distributed Denial of Service (DDoS) attack in Software Defined Networks. Distributed Denial of Service attacks are one of the most destructive attacks in the internet. Whenever you heard of a website being hacked, it would have probably been a victim of a DDoS attack. A DDoS attack is aimed at disrupting the normal operation of a system by making service and resources unavailable to legitimate users by overloading the system with excessive superfluous traffic from distributed source. These distributed set of compromised hosts that performs the attack are referred as Botnet. Software Defined Networking being an emerging technology, offers a solution to reduce network management complexity. It separates the Control plane and the data plane. This decoupling provides centralized control of the network with programmability and flexibility. This work harness this programming ability and centralized control of SDN to obtain the randomness of the network flow data. This statistical approach utilizes the source IP in the network and various attributes of TCP flags and calculates entropy from them. The proposed technique can detect volume based and application based DDoS attacks like TCP SYN flood, Ping flood and Slow HTTP attacks. The methodology is evaluated through emulation using Mininet and Detection and mitigation strategies are implemented in POX controller. The experimental results show the proposed method have improved performance evaluation parameters including the Attack detection time, Delay to serve a legitimate request in the presence of attacker and overall CPU utilization.
Kriaa, S., Papillon, S., Jagadeesan, L., Mendiratta, V..  2020.  Better Safe than Sorry: Modeling Reliability and Security in Replicated SDN Controllers. 2020 16th International Conference on the Design of Reliable Communication Networks DRCN 2020. :1—6.
Software-defined networks (SDN), through their programmability, significantly increase network resilience by enabling dynamic reconfiguration of network topologies in response to faults and potentially malicious attacks detected in real-time. Another key trend in network softwarization is cloud-native software, which, together with SDN, will be an integral part of the core of future 5G networks. In SDN, the control plane forms the "brain" of the software-defined network and is typically implemented as a set of distributed controller replicas to avoid a single point of failure. Distributed consensus algorithms are used to ensure agreement among the replicas on key data even in the presence of faults. Security is also a critical concern in ensuring that attackers cannot compromise the SDN control plane; byzantine fault tolerance algorithms can provide protection against compromised controller replicas. However, while reliability/availability and security form key attributes of resilience, they are typically modeled separately in SDN, without consideration of the potential impacts of their interaction. In this paper we present an initial framework for a model that unifies reliability, availability, and security considerations in distributed consensus. We examine – via simulation of our model – some impacts of the interaction between accidental faults and malicious attacks on SDN and suggest potential mitigations unique to cloud-native software.
2020-12-14
Boualouache, A., Soua, R., Engel, T..  2020.  SDN-based Misbehavior Detection System for Vehicular Networks. 2020 IEEE 91st Vehicular Technology Conference (VTC2020-Spring). :1–5.
Vehicular networks are vulnerable to a variety of internal attacks. Misbehavior Detection Systems (MDS) are preferred over the cryptography solutions to detect such attacks. However, the existing misbehavior detection systems are static and do not adapt to the context of vehicles. To this end, we exploit the Software-Defined Networking (SDN) paradigm to propose a context-aware MDS. Based on the context, our proposed system can tune security parameters to provide accurate detection with low false positives. Our system is Sybil attack-resistant and compliant with vehicular privacy standards. The simulation results show that, under different contexts, our system provides a high detection ratio and low false positives compared to a static MDS.
2020-10-19
Indira, K, Ajitha, P, Reshma, V, Tamizhselvi, A.  2019.  An Efficient Secured Routing Protocol for Software Defined Internet of Vehicles. 2019 International Conference on Computational Intelligence in Data Science (ICCIDS). :1–4.
Vehicular ad hoc network is one of most recent research areas to deploy intelligent Transport System. Due to their highly dynamic topology, energy constrained and no central point coordination, routing with minimal delay, minimal energy and maximize throughput is a big challenge. Software Defined Networking (SDN) is new paradigm to improve overall network lifetime. It incorporates dynamic changes with minimal end-end delay, and enhances network intelligence. Along with this, intelligence secure routing is also a major constraint. This paper proposes a novel approach to Energy efficient secured routing protocol for Software Defined Internet of vehicles using Restricted Boltzmann Algorithm. This algorithm is to detect hostile routes with minimum delay, minimum energy and maximum throughput compared with traditional routing protocols.
2020-06-29
Sebbar, Anass, Zkik, Karim, Baadi, Youssef, Boulmalf, Mohammed, ECH-CHERIF El KETTANI, Mohamed Dafir.  2019.  Using advanced detection and prevention technique to mitigate threats in SDN architecture. 2019 15th International Wireless Communications Mobile Computing Conference (IWCMC). :90–95.
Software defined networks represent a new centralized network abstraction that aims to ease configuration and facilitate applications and services deployment to manage the upper layers. However, SDN faces several challenges that slow down its implementation such as security which represents one of the top concerns of SDN experts. Indeed, SDN inherits all security matters from traditional networks and suffers from some additional vulnerability due to its centralized and unique architecture. Using traditional security devices and solutions to mitigate SDN threats can be very complicated and can negatively effect the networks performance. In this paper we propose a study that measures the impact of using some well-known security solution to mitigate intrusions on SDN's performances. We will also present an algorithm named KPG-MT adapted to SDN architecture that aims to mitigate threats such as a Man in the Middle, Deny of Services and malware-based attacks. An implementation of our algorithm based on multiple attacks' scenarios and mitigation processes will be made to prove the efficiency of the proposed framework.
2020-05-15
Khorsandroo, Sajad, Tosun, Ali Saman.  2018.  Time Inference Attacks on Software Defined Networks: Challenges and Countermeasures. 2018 IEEE 11th International Conference on Cloud Computing (CLOUD). :342—349.

Through time inference attacks, adversaries fingerprint SDN controllers, estimate switches flow-table size, and perform flow state reconnaissance. In fact, timing a SDN and analyzing its results can expose information which later empowers SDN resource-consumption or saturation attacks. In the real world, however, launching such attacks is not easy. This is due to some challenges attackers may encounter while attacking an actual SDN deployment. These challenges, which are not addressed adequately in the related literature, are investigated in this paper. Accordingly, practical solutions to mitigate such attacks are also proposed. Discussed challenges are clarified by means of conducting extensive experiments on an actual cloud data center testbed. Moreover, mitigation schemes have been implemented and examined in details. Experimental results show that proposed countermeasures effectively block time inference attacks.

Kelly, Jonathan, DeLaus, Michael, Hemberg, Erik, O’Reilly, Una-May.  2019.  Adversarially Adapting Deceptive Views and Reconnaissance Scans on a Software Defined Network. 2019 IFIP/IEEE Symposium on Integrated Network and Service Management (IM). :49—54.

To gain strategic insight into defending against the network reconnaissance stage of advanced persistent threats, we recreate the escalating competition between scans and deceptive views on a Software Defined Network (SDN). Our threat model presumes the defense is a deceptive network view unique for each node on the network. It can be configured in terms of the number of honeypots and subnets, as well as how real nodes are distributed across the subnets. It assumes attacks are NMAP ping scans that can be configured in terms of how many IP addresses are scanned and how they are visited. Higher performing defenses detect the scanner quicker while leaking as little information as possible while higher performing attacks are better at evading detection and discovering real nodes. By using Artificial Intelligence in the form of a competitive coevolutionary genetic algorithm, we can analyze the configurations of high performing static defenses and attacks versus their evolving adversary as well as the optimized configuration of the adversary itself. When attacks and defenses both evolve, we can observe that the extent of evolution influences the best configurations.

2020-05-04
Karmakar, Kallol Krishna, Varadharajan, Vijay, Nepal, Surya, Tupakula, Uday.  2019.  SDN Enabled Secure IoT Architecture. 2019 IFIP/IEEE Symposium on Integrated Network and Service Management (IM). :581–585.
The Internet of Things (IoT) is increasingly being used in applications ranging from precision agriculture to critical national infrastructure by deploying a large number of resource-constrained devices in hostile environments. These devices are being exploited to launch attacks in cyber systems. As a result, security has become a significant concern in the design of IoT based applications. In this paper, we present a security architecture for IoT networks by leveraging the underlying features supported by Software Defined Networks (SDN). Our security architecture restricts network access to authenticated IoT devices. We use fine granular policies to secure the flows in the IoT network infrastructure and provide a lightweight protocol to authenticate IoT devices. Such an integrated security approach involving authentication of IoT devices and enabling authorized flows can help to protect IoT networks from malicious IoT devices and attacks.
2020-04-13
O’Raw, John, Laverty, David, Morrow, D. John.  2019.  Securing the Industrial Internet of Things for Critical Infrastructure (IIoT-CI). 2019 IEEE 5th World Forum on Internet of Things (WF-IoT). :70–75.
The Industrial Internet of Things (IIoT) is a term applied to the industrial application of M2M devices. The security of IIoT devices is a difficult problem and where the automation of critical infrastructure is intended, risks may be unacceptable. Remote attacks are a significant threat and solutions are sought which are secure by default. The problem space may be analyzed using threat modelling methods. Software Defined Networks (SDN) provide mitigation for remote attacks which exploit local area networks. Similar concepts applied to the WAN may improve availability and performance and provide granular data on link characteristics. Schemes such as the Software Defined Perimeter allow IIoT devices to communicate on the Internet, mitigating avenues of remote attack. Finally, separation of duties at the IIoT device may prevent attacks on the integrity of the device or the confidentiality and integrity of its communications. Work remains to be done on the mitigation of DDoS.
2020-03-02
Tootaghaj, Diman Zad, La Porta, Thomas, He, Ting.  2019.  Modeling, Monitoring and Scheduling Techniques for Network Recovery from Massive Failures. 2019 IFIP/IEEE Symposium on Integrated Network and Service Management (IM). :695–700.

Large-scale failures in communication networks due to natural disasters or malicious attacks can severely affect critical communications and threaten lives of people in the affected area. In the absence of a proper communication infrastructure, rescue operation becomes extremely difficult. Progressive and timely network recovery is, therefore, a key to minimizing losses and facilitating rescue missions. To this end, we focus on network recovery assuming partial and uncertain knowledge of the failure locations. We proposed a progressive multi-stage recovery approach that uses the incomplete knowledge of failure to find a feasible recovery schedule. Next, we focused on failure recovery of multiple interconnected networks. In particular, we focused on the interaction between a power grid and a communication network. Then, we focused on network monitoring techniques that can be used for diagnosing the performance of individual links for localizing soft failures (e.g. highly congested links) in a communication network. We studied the optimal selection of the monitoring paths to balance identifiability and probing cost. Finally, we addressed, a minimum disruptive routing framework in software defined networks. Extensive experimental and simulation results show that our proposed recovery approaches have a lower disruption cost compared to the state-of-the-art while we can configure our choice of trade-off between the identifiability, execution time, the repair/probing cost, congestion and the demand loss.

2020-02-26
Kaur, Gaganjot, Gupta, Prinima.  2019.  Hybrid Approach for Detecting DDOS Attacks in Software Defined Networks. 2019 Twelfth International Conference on Contemporary Computing (IC3). :1–6.

In today's time Software Defined Network (SDN) gives the complete control to get the data flow in the network. SDN works as a central point to which data is administered centrally and traffic is also managed. SDN being open source product is more prone to security threats. The security policies are also to be enforced as it would otherwise let the controller be attacked the most. The attacks like DDOS and DOS attacks are more commonly found in SDN controller. DDOS is destructive attack that normally diverts the normal flow of traffic and starts the over flow of flooded packets halting the system. Machine Learning techniques helps to identify the hidden and unexpected pattern of the network and hence helps in analyzing the network flow. All the classified and unclassified techniques can help detect the malicious flow based on certain parameters like packet flow, time duration, accuracy and precision rate. Researchers have used Bayesian Network, Wavelets, Support Vector Machine and KNN to detect DDOS attacks. As per the review it's been analyzed that KNN produces better result as per the higher precision and giving a lower falser rate for detection. This paper produces better approach of hybrid Machine Learning techniques rather than existing KNN on the same data set giving more accuracy of detecting DDOS attacks on higher precision rate. The result of the traffic with both normal and abnormal behavior is shown and as per the result the proposed algorithm is designed which is suited for giving better approach than KNN and will be implemented later on for future.

2020-02-18
Dishington, Cole, Sharma, Dilli P., Kim, Dong Seong, Cho, Jin-Hee, Moore, Terrence J., Nelson, Frederica F..  2019.  Security and Performance Assessment of IP Multiplexing Moving Target Defence in Software Defined Networks. 2019 18th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/13th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :288–295.

With the interconnection of services and customers, network attacks are capable of large amounts of damage. Flexible Random Virtual IP Multiplexing (FRVM) is a Moving Target Defence (MTD) technique that protects against reconnaissance and access with address mutation and multiplexing. Security techniques must be trusted, however, FRVM, along with past MTD techniques, have gaps in realistic evaluation and thorough analysis of security and performance. FRVM, and two comparison techniques, were deployed on a virtualised network to demonstrate FRVM's security and performance trade-offs. The key results include the security and performance trade-offs of address multiplexing and address mutation. The security benefit of IP address multiplexing is much greater than its performance overhead, deployed on top of address mutation. Frequent address mutation significantly increases an attackers' network scan durations as well as effectively obfuscating and hiding network configurations.

2019-12-18
Saharan, Shail, Gupta, Vishal.  2019.  Prevention and Mitigation of DNS Based DDoS Attacks in SDN Environment. 2019 11th International Conference on Communication Systems Networks (COMSNETS). :571-573.

Denial-of-Service attack (DoS attack) is an attack on network in which an attacker tries to disrupt the availability of network resources by overwhelming the target network with attack packets. In DoS attack it is typically done using a single source, and in a Distributed Denial-of-Service attack (DDoS attack), like the name suggests, multiple sources are used to flood the incoming traffic of victim. Typically, such attacks use vulnerabilities of Domain Name System (DNS) protocol and IP spoofing to disrupt the normal functioning of service provider or Internet user. The attacks involving DNS, or attacks exploiting vulnerabilities of DNS are known as DNS based DDOS attacks. Many of the proposed DNS based DDoS solutions try to prevent/mitigate such attacks using some intelligent non-``network layer'' (typically application layer) protocols. Utilizing the flexibility and programmability aspects of Software Defined Networks (SDN), via this proposed doctoral research it is intended to make underlying network intelligent enough so as to prevent DNS based DDoS attacks.

2019-12-02
Tseng, Yuchia, Nait-Abdesselam, Farid, Khokhar, Ashfaq.  2018.  SENAD: Securing Network Application Deployment in Software Defined Networks. 2018 IEEE International Conference on Communications (ICC). :1–6.
The Software Defined Networks (SDN) paradigm, often referred to as a radical new idea in networking, promises to dramatically simplify network management by enabling innovation through network programmability. However, notable security issues, such as app-to-control threats, remain a significant concern that impedes SDN from being widely adopted. To cope with those app-to-control threats, this paper proposes a solution to securely deploy valid network applications while protecting the SDN controller against the injection of the malicious application. This problem is mitigated by proposing a novel SDN architecture, dubbed SENAD, which splits the well-known SDN controller into: (1) a data plane controller (DPC), and (2) an application plane controller (APC), to secure this latter by design. The role of the DPC is dedicated for interpreting the network rules into OpenFlow entries and maintaining the communication with the data plane. The role of the APC, however, is to provide a secured runtime for deploying the network applications, including authentication, access control, resource isolation, control, and monitoring applications. We show that this approach can easily shield against any deny of service, caused for instance by the resource exhaustion attack or the malicious command injection, that is caused by the co-existence of a malicious application on the controller's runtime. The evaluation of our architecture shows that the packet\_in messages take less than 5 ms to be delivered from the data plane to the application plane on the long range.
2019-09-11
Wang, D., Ma, Y., Du, J., Ji, Y., Song, Y..  2018.  Security-Enhanced Signaling Scheme in Software Defined Optical Network. 2018 10th International Conference on Communication Software and Networks (ICCSN). :286–289.

The communication security issue is of great importance and should not be ignored in backbone optical networks which is undergoing the evolution toward software defined networks (SDN). With the aim to solve this problem, this paper conducts deep analysis into the security challenge of software defined optical networks (SDON) and proposes a so-called security-enhanced signaling scheme of SDON. The proposed scheme makes full advantage of current OpenFIow protocol with some necessary extensions and security improvement, by combining digital signatures and message feedback with efficient PKI (Public Key Infrastructure) in signaling procedure of OpenFIow interaction. Thus, this security-enhanced signaling procedure is also designed in details to make sure the end-to-end trusted service connection. Simulation results show that this proposed approach can greatly improve the security level of large-scale optical network for Energy Internet services with better performance in term of connection success rate performance.

2019-06-10
Arsalan, A., Rehman, R. A..  2018.  Prevention of Timing Attack in Software Defined Named Data Network with VANETs. 2018 International Conference on Frontiers of Information Technology (FIT). :247–252.

Software Defined Network (SDN) is getting popularity both from academic and industry. Lot of researches have been made to combine SDN with future Internet paradigms to manage and control networks efficiently. SDN provides better management and control in a network through decoupling of data and control plane. Named Data Networking (NDN) is a future Internet technique with aim to replace IPv4 addressing problems. In NDN, communication between different nodes done on the basis of content names rather than IP addresses. Vehicular Ad-hoc Network (VANET) is a subtype of MANET which is also considered as a hot area for future applications. Different vehicles communicate with each other to form a network known as VANET. Communication between VANET can be done in two ways (i) Vehicle to Vehicle (V2V) (ii) Vehicle to Infrastructure (V2I). Combination of SDN and NDN techniques in future Internet can solve lot of problems which were hard to answer by considering a single technique. Security in VANET is always challenging due to unstable topology of VANET. In this paper, we merge future Internet techniques and propose a new scheme to answer timing attack problem in VANETs named as Timing Attack Prevention (TAP) protocol. Proposed scheme is evaluated through simulations which shows the superiority of proposed protocol regarding detection and mitigation of attacker vehicles as compared to normal timing attack scenario in NDN based VANET.

2019-01-21
Cabaj, Krzysztof, Gregorczyk, Marcin, Mazurczyk, Wojciech, Nowakowski, Piotr, \textbackslashtextbackslash.Zórawski, Piotr.  2018.  SDN-based Mitigation of Scanning Attacks for the 5G Internet of Radio Light System. Proceedings of the 13th International Conference on Availability, Reliability and Security. :49:1–49:10.
Currently 5G communication networks are gaining on importance among industry, academia, and governments worldwide as they are envisioned to offer wide range of high-quality services and unfaltering user experiences. However, certain security, privacy and trust challenges need to be addressed in order for the 5G networks to be widely welcomed and accepted. That is why in this paper, we take a step towards these requirements and we introduce a dedicated SDN-based integrated security framework for the Internet of Radio Light (IoRL) system that is following 5G architecture design. In particular, we present how TCP SYN-based scanning activities which typically comprise the first phase of the attack chain can be detected and mitigated using such an approach. Enclosed experimental results prove that the proposed security framework has potential to become an effective defensive solution.