Visible to the public Biblio

Found 5879 results

Filters: Keyword is composability  [Clear All Filters]
2023-09-01
Shaburov, Andrey S., Alekseev, Vsevolod R..  2022.  Development of a Model for Managing the Openness of an Information System in the Context of Information Security Risks of Critical Information Infrastructure Object. 2022 Conference of Russian Young Researchers in Electrical and Electronic Engineering (ElConRus). :431—435.
The problem of information security of critical information infrastructure objects in the conditions of openness is formulated. The concept of information infrastructure openness is analyzed. An approach to assessing the openness of an information system is presented. A set-theoretic model of information resources openness was developed. The formulation of the control problem over the degree of openness with restrictions on risk was carried out. An example of solving the problem of finding the coefficient of openness is presented.
2023-08-25
Delport, Petrus M.J, van Niekerk, Johan, Reid, Rayne.  2022.  Introduction to Information Security: From Formal Curriculum to Organisational Awareness. 2022 IEEE European Symposium on Security and Privacy Workshops (EuroS&PW). :463–469.
Many organisations responded to the recent global pandemic by moving operations online. This has led to increased exposure to information security-related risks. There is thus an increased need to ensure organisational information security awareness programs are up to date and relevant to the needs of the intended target audience. The advent of online educational providers has similarly placed increased pressure on the formal educational sector to ensure course content is updated to remain relevant. Such processes of academic reflection and review should consider formal curriculum standards and guidelines in order to ensure wide relevance. This paper presents a case study of the review of an Introduction to Information Security course. This review is informed by the Information Security and Assurance knowledge area of the ACM/IEEE Computer Science 2013 curriculum standard. The paper presents lessons learned during this review process to serve as a guide for future reviews of this nature. The authors assert that these lessons learned can also be of value during the review of organisational information security awareness programs.
ISSN: 2768-0657
Wu, Bo, Chen, Lei, Zong, Qi.  2022.  Research on New Power System Network Security Guarantee System. 2022 International Conference on Informatics, Networking and Computing (ICINC). :91–94.
Based on the characteristics of the new power system with many points, wide range and unattended, this paper studies the specific Cyberspace security risks faced by the disease control side, the station side and the site side, and proposes a new power system Cyberspace security assurance system of “integration of collection, network, side, end, industry and people”. The site side security access measures, the site side civil air defense technology integration measures, the whole business endogenous security mechanism, the whole domain communication security mechanism, the integrated monitoring and early warning and emergency response mechanism are specifically adopted to form a comprehensive integrated security mechanism for the new power system, form a sustainable protection model, effectively improve the security capability, while taking into account the cost and operational complexity of specific implementation links, Provide comprehensive guarantee capability for the safe operation of the new power system.
Khujamatov, Halimjon, Lazarev, Amir, Akhmedov, Nurshod, Asenbaev, Nurbek, Bekturdiev, Aybek.  2022.  Overview Of Vanet Network Security. 2022 International Conference on Information Science and Communications Technologies (ICISCT). :1–6.
This article provides an overview of the security of VANET, which is a vehicle network. When reviewing this topic, publications of various researchers were considered. The article provides information security requirements for VANET, an overview of security research, an overview of existing attacks, methods for detecting attacks and appropriate countermeasures against such threats.
Peng, Jianhuan.  2022.  Research on E-government Information Security Based on Cloud Computing. 2022 IEEE 10th Joint International Information Technology and Artificial Intelligence Conference (ITAIC). 10:312–316.
As an important pillar of social informatization, e-government not only provides more convenient services for the public, but also effectively improves administrative efficiency. At the same time, the application of cloud computing technology also urgently requires the government to improve the level of digital construction. This paper proposes the concept of e-government based on cloud computing, analyze the possible hidden dangers that cloud computing brings to e-government in management, technology, and security, and build cloud computing e-government information security system from three aspects: cloud security management, cloud security technology, and cloud security assurance.
ISSN: 2693-2865
Utomo, Rio Guntur, Yahya, Farashazillah, Almarshad, Fahdah, Wills, Gary B.  2022.  Factors Affecting Information Assurance for Big Data. 2022 1st International Conference on Software Engineering and Information Technology (ICoSEIT). :1–5.
Big Data is a concept used in various sectors today, including the government sector in the Smart Government initiative. With a large amount of structured and unstructured data being managed, information assurance becomes important in adopting Big Data. However, so far, no research has focused on information assurance for Big Data. This paper identified information assurance factors for Big Data. This research used the systematic snapshot mapping approach to examine factors relating to information assurance from the literature related to Big Data from 2011 through 2021. The data extraction process in gathering 15 relevant papers. The findings revealed ten factors influencing the information assurance implementation for Big Data, with the security factor becoming the most concentrated factor with 18 sub-factors. The findings are expected to serve as a foundation for adopting information assurance for Big Data to develop an information assurance framework for Smart Government.
2023-08-24
Mishra, Shilpi, Arora, Himanshu, Parakh, Garvit, Khandelwal, Jayesh.  2022.  Contribution of Blockchain in Development of Metaverse. 2022 7th International Conference on Communication and Electronics Systems (ICCES). :845–850.
Metaverse is becoming the new standard for social networks and 3D virtual worlds when Facebook officially rebranded to Metaverse in October 2021. Many relevant technologies are used in the metaverse to offer 3D immersive and customized experiences at the user’s fingertips. Despite the fact that the metaverse receives a lot of attention and advantages, one of the most pressing concerns for its users is the safety of their digital material and data. As a result of its decentralization, immutability, and transparency, blockchain is a possible alternative. Our goal is to conduct a comprehensive assessment of blockchain systems in the metaverse to properly appreciate its function in the metaverse. To begin with, the paper introduces blockchain and the metaverse and explains why it’s necessary for the metaverse to adopt blockchain technology. Aside from these technological considerations, this article focuses on how blockchain-based approaches for the metaverse may be used from a privacy and security standpoint. There are several technological challenegs that need to be addressed for making the metaverse a reality. The influence of blockchain on important key technologies with in metaverse, such as Artifical Intelligence, big data and the Internet-of-Things (IoT) is also examined. Several prominent initiatives are also shown to demonstrate the importance of blockchain technology in the development of metaverse apps and services. There are many possible possibilities for future development and research in the application of blockchain technology in the metaverse.
Sun, Chuang, Cao, Junwei, Huo, Ru, Du, Lei, Cheng, Xiangfeng.  2022.  Metaverse Applications in Energy Internet. 2022 IEEE International Conference on Energy Internet (ICEI). :7–12.
With the increasing number of distributed energy sources and the growing demand for free exchange of energy, Energy internet (EI) is confronted with great challenges of persistent connection, stable transmission, real-time interaction, and security. The new definition of metaverse in the EI field is proposed as a potential solution for these challenges by establishing a massive and comprehensive fusion 3D network, which can be considered as the advanced stage of EI. The main characteristics of the metaverse such as reality to virtualization, interaction, persistence, and immersion are introduced. Specifically, we present the key enabling technologies of the metaverse including virtual reality, artificial intelligence, blockchain, and digital twin. Meanwhile, the potential applications are presented from the perspectives of immersive user experience, virtual power station, management, energy trading, new business, device maintenance. Finally, some challenges of metaverse in EI are concluded.
Xu, Xinyun, Li, Bing, Wang, Yuhao.  2022.  Exploration of the principle of 6G communication technology and its development prospect. 2022 International Conference on Electronics and Devices, Computational Science (ICEDCS). :100–103.
Nowadays, 5G has been widely used in various fields. People are starting to turn their attention to 6G. Therefore, at the beginning, this paper describes in detail the principle and performance of 6G, and introduces the key technologies of 6G, Cavity technology and THz technology. Based on the high-performance indicators of 6G, we then study the possible application changes brought by 6G, for example, 6G technology will make remote surgery and remote control possible. 6G technology will make remote surgery and remote control possible. 6G will speed up the interconnection of everything, allowing closer and faster connection between cars. Next, virtual reality is discussed. 6G technology will enable better development of virtual reality technology and enhance people's immersive experience. Finally, we present the issues that need to be addressed with 6G technology, such as cybersecurity issues and energy requirements. As well as the higher challenges facing 6G technology, such as connectivity and communication on a larger social plane.
Peng, Haoran, Chen, Pei-Chen, Chen, Pin-Hua, Yang, Yung-Shun, Hsia, Ching-Chieh, Wang, Li-Chun.  2022.  6G toward Metaverse: Technologies, Applications, and Challenges. 2022 IEEE VTS Asia Pacific Wireless Communications Symposium (APWCS). :6–10.
Metaverse opens up a new social networking paradigm where people can experience a real interactive feeling without physical space constraints. Social interactions are gradually evolving from text combined with pictures and videos to 3-dimensional virtual reality, making the social experience increasingly physical, implying that more metaverse applications with immersive experiences will be developed in the future. However, the increasing data dimensionality and volume for new metaverse applications present a significant challenge in data acquisition, security, and sharing. Furthermore, metaverse applications require high capacity and ultrareliability for the wireless system to guarantee the quality of user experience, which cannot be addressed in the current fifth-generation system. Therefore, reaching the metaverse is dependent on the revolution in the sixth-generation (6G) wireless communication, which is expected to provide low-latency, high-throughput, and secure services. This article provides a comprehensive view of metaverse applications and investigates the fundamental technologies for the 6G toward metaverse.
Riedel, Paul, Riesner, Michael, Wendt, Karsten, Aßmann, Uwe.  2022.  Data-Driven Digital Twins in Surgery utilizing Augmented Reality and Machine Learning. 2022 IEEE International Conference on Communications Workshops (ICC Workshops). :580–585.
On the one hand, laparoscopic surgery as medical state-of-the-art method is minimal invasive, and thus less stressful for patients. On the other hand, laparoscopy implies higher demands on physicians, such as mental load or preparation time, hence appropriate technical support is essential for quality and suc-cess. Medical Digital Twins provide an integrated and virtual representation of patients' and organs' data, and thus a generic concept to make complex information accessible by surgeons. In this way, minimal invasive surgery could be improved significantly, but requires also a much more complex software system to achieve the various resulting requirements. The biggest challenges for these systems are the safe and precise mapping of the digital twin to reality, i.e. dealing with deformations, movement and distortions, as well as balance out the competing requirement for intuitive and immersive user access and security. The case study ARAILIS is presented as a proof in concept for such a system and provides a starting point for further research. Based on the insights delivered by this prototype, a vision for future Medical Digital Twins in surgery is derived and discussed.
ISSN: 2694-2941
Aliman, Nadisha-Marie, Kester, Leon.  2022.  VR, Deepfakes and Epistemic Security. 2022 IEEE International Conference on Artificial Intelligence and Virtual Reality (AIVR). :93–98.
In recent years, technological advancements in the AI and VR fields have increasingly often been paired with considerations on ethics and safety aimed at mitigating unintentional design failures. However, cybersecurity-oriented AI and VR safety research has emphasized the need to additionally appraise instantiations of intentional malice exhibited by unethical actors at pre- and post-deployment stages. On top of that, in view of ongoing malicious deepfake developments that can represent a threat to the epistemic security of a society, security-aware AI and VR design strategies require an epistemically-sensitive stance. In this vein, this paper provides a theoretical basis for two novel AIVR safety research directions: 1) VR as immersive testbed for a VR-deepfake-aided epistemic security training and 2) AI as catalyst within a deepfake-aided so-called cyborgnetic creativity augmentation facilitating an epistemically-sensitive threat modelling. For illustration, we focus our use case on deepfake text – an underestimated deepfake modality. In the main, the two proposed transdisciplinary lines of research exemplify how AIVR safety to defend against unethical actors could naturally converge toward AIVR ethics whilst counteracting epistemic security threats.
ISSN: 2771-7453
Veeraiah, Vivek, Kumar, K Ranjit, Lalitha Kumari, P., Ahamad, Shahanawaj, Bansal, Rohit, Gupta, Ankur.  2022.  Application of Biometric System to Enhance the Security in Virtual World. 2022 2nd International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE). :719–723.
Virtual worlds was becoming increasingly popular in a variety of fields, including education, business, space exploration, and video games. Establishing the security of virtual worlds was becoming more critical as they become more widely used. Virtual users were identified using a behavioral biometric system. Improve the system's ability to identify objects by fusing scores from multiple sources. Identification was based on a review of user interactions in virtual environments and a comparison with previous recordings in the database. For behavioral biometric systems like the one described, it appears that score-level biometric fusion was a promising tool for improving system performance. As virtual worlds become more immersive, more people will want to participate in them, and more people will want to be able to interact with each other. Each region of the Meta-verse was given a glimpse of the current state of affairs and the trends to come. As hardware performance and institutional and public interest continue to improve, the Meta-verse's development is hampered by limitations like computational method limits and a lack of realized collaboration between virtual world stakeholders and developers alike. A major goal of the proposed research was to verify the accuracy of the biometric system to enhance the security in virtual world. In this study, the precision of the proposed work was compared to that of previous work.
Wei-Kocsis, Jin, Sabounchi, Moein, Yang, Baijian, Zhang, Tonglin.  2022.  Cybersecurity Education in the Age of Artificial Intelligence: A Novel Proactive and Collaborative Learning Paradigm. 2022 IEEE Frontiers in Education Conference (FIE). :1–5.
This Innovative Practice Work-in-Progress paper presents a virtual, proactive, and collaborative learning paradigm that can engage learners with different backgrounds and enable effective retention and transfer of the multidisciplinary AI-cybersecurity knowledge. While progress has been made to better understand the trustworthiness and security of artificial intelligence (AI) techniques, little has been done to translate this knowledge to education and training. There is a critical need to foster a qualified cybersecurity workforce that understands the usefulness, limitations, and best practices of AI technologies in the cybersecurity domain. To address this import issue, in our proposed learning paradigm, we leverage multidisciplinary expertise in cybersecurity, AI, and statistics to systematically investigate two cohesive research and education goals. First, we develop an immersive learning environment that motivates the students to explore AI/machine learning (ML) development in the context of real-world cybersecurity scenarios by constructing learning models with tangible objects. Second, we design a proactive education paradigm with the use of hackathon activities based on game-based learning, lifelong learning, and social constructivism. The proposed paradigm will benefit a wide range of learners, especially underrepresented students. It will also help the general public understand the security implications of AI. In this paper, we describe our proposed learning paradigm and present our current progress of this ongoing research work. In the current stage, we focus on the first research and education goal and have been leveraging cost-effective Minecraft platform to develop an immersive learning environment where the learners are able to investigate the insights of the emerging AI/ML concepts by constructing related learning modules via interacting with tangible AI/ML building blocks.
ISSN: 2377-634X
Kaufmann, Kaspar, Wyssenbach, Thomas, Schwaninger, Adrian.  2022.  Exploring the effects of segmentation when learning with Virtual Reality and 2D displays: a study with airport security officers. 2022 IEEE International Carnahan Conference on Security Technology (ICCST). :1–1.
With novel 3D imaging technology based on computed tomography (CT) set to replace the current 2D X-ray systems, airports face the challenge of adequately preparing airport security officers (screeners) through knowledge building. Virtual reality (VR) bears the potential to greatly facilitate this process by allowing learners to experience and engage in immersive virtual scenarios as if they were real. However, while general aspects of immersion have been explored frequently, less is known about the benefits of immersive technology for instructional purposes in practical settings such as airport security.In the present study, we evaluated how different display technologies (2D vs VR) and segmentation (system-paced vs learner-paced) affected screeners' objective and subjective knowledge gain, cognitive load, as well as aspects of motivation and technology acceptance. By employing a 2 x 2 between-subjects design, four experimental groups experienced uniform learning material featuring information about 3D CT technology and its application in airport security: 2D system-paced, 2D learner-paced, VR system-paced, and VR learner-paced. The instructional material was presented as an 11 min multimedia lesson featuring words (i.e., narration, onscreen text) and pictures in dynamic form (i.e., video, animation). Participants of the learner-paced groups were prompted to initialize the next section of the multimedia lesson by pressing a virtual button after short segments of information. Additionally, a control group experiencing no instructional content was included to evaluate the effectiveness of the instructional material. The data was collected at an international airport with screeners having no prior 3D CT experience (n=162).The results show main effects on segmentation for objective learning outcomes (favoring system-paced), germane cognitive load on display technology (supporting 2D). These results contradict the expected benefits of VR and segmentation, respectively. Overall, the present study offers valuable insight on how to implement instructional material for a practical setting.
ISSN: 2153-0742
Briggs, Shannon, Chabot, Sam, Sanders, Abraham, Peveler, Matthew, Strzalkowski, Tomek, Braasch, Jonas.  2022.  Multiuser, multimodal sensemaking cognitive immersive environment with a task-oriented dialog system. 2022 IEEE International Symposium on Technologies for Homeland Security (HST). :1–3.
This paper is a conceptual paper that explores how the sensemaking process by intelligence analysts completed within a cognitive immersive environment might be impacted by the inclusion of a progressive dialog system. The tools enabled in the sensemaking room (a specific instance within the cognitive immersive environment) were informed by tools from the intelligence analysis domain. We explore how a progressive dialog system would impact the use of tools such as the collaborative brainstorming exercise [1]. These structured analytic techniques are well established in intelligence analysis training literature, and act as ways to access the intended users' cognitive schema as they use the cognitive immersive room and move through the sensemaking process. A prior user study determined that the sensemaking room encouraged users to be more concise and representative with information while using the digital brainstorming tool. We anticipate that addition of the progressive dialog function will enable a more cohesive link between information foraging and sensemaking behaviors for analysts.
2023-08-16
Reis, Sofia, Abreu, Rui, Erdogmus, Hakan, Păsăreanu, Corina.  2022.  SECOM: Towards a convention for security commit messages. 2022 IEEE/ACM 19th International Conference on Mining Software Repositories (MSR). :764—765.
One way to detect and assess software vulnerabilities is by extracting security-related information from commit messages. Automating the detection and assessment of vulnerabilities upon security commit messages is still challenging due to the lack of structured and clear messages. We created a convention, called SECOM, for security commit messages that structure and include bits of security-related information that are essential for detecting and assessing vulnerabilities for both humans and tools. The full convention and details are available here: https://tqrg.github.io/secom/.
Kara, Orhun.  2022.  How to Exploit Biham-Keller ID Characteristic to Minimize Data. 2022 15th International Conference on Information Security and Cryptography (ISCTURKEY). :44—48.
In this work, we examine the following question: How can we improve the best data complexity among the impossible differential (ID) attacks on AES? One of the most efficient attacks on AES are ID attacks. We have seen that the Biham-Keller ID characteristics are frequently used in these ID attacks. We observe the following fact: The probability that a given pair with a wrong key produce an ID characteristic is closely correlated to the data usage negatively. So, we maximize this probability by exploiting a Biham-Keller ID characteristic in a different manner than the other attacks. As a result, we mount an ID attack on 7-round AES-192 and obtain the best data requirement among all the ID attacks on 7-round AES. We make use of only 2$^\textrm58$ chosen plaintexts.
Liu, Lisa, Engelen, Gints, Lynar, Timothy, Essam, Daryl, Joosen, Wouter.  2022.  Error Prevalence in NIDS datasets: A Case Study on CIC-IDS-2017 and CSE-CIC-IDS-2018. 2022 IEEE Conference on Communications and Network Security (CNS). :254—262.
Benchmark datasets are heavily depended upon by the research community to validate theoretical findings and track progression in the state-of-the-art. NIDS dataset creation presents numerous challenges on account of the volume, heterogeneity, and complexity of network traffic, making the process labor intensive, and thus, prone to error. This paper provides a critical review of CIC-IDS-2017 and CIC-CSE-IDS-2018, datasets which have seen extensive usage in the NIDS literature, and are currently considered primary benchmarking datasets for NIDS. We report a large number of previously undocumented errors throughout the dataset creation lifecycle, including in attack orchestration, feature generation, documentation, and labeling. The errors destabilize the results and challenge the findings of numerous publications that have relied on it as a benchmark. We demonstrate the implications of these errors through several experiments. We provide comprehensive documentation to summarize the discovery of these issues, as well as a fully-recreated dataset, with labeling logic that has been reverse-engineered, corrected, and made publicly available for the first time. We demonstrate the implications of dataset errors through a series of experiments. The findings serve to remind the research community of common pitfalls with dataset creation processes, and of the need to be vigilant when adopting new datasets. Lastly, we strongly recommend the release of labeling logic for any dataset released, to ensure full transparency.
Varma, Ch. Phaneendra, Babu, G. Ramesh, Sree, Pokkuluri Kiran, Sai, N. Raghavendra.  2022.  Usage of Classifier Ensemble for Security Enrichment in IDS. 2022 International Conference on Automation, Computing and Renewable Systems (ICACRS). :420—425.
The success of the web and the consequent rise in data sharing have made network security a challenge. Attackers from all around the world target PC installations. When an attack is successful, an electronic device's security is jeopardised. The intrusion implicitly includes any sort of behaviours that purport to think twice about the respectability, secrecy, or accessibility of an asset. Information is shielded from unauthorised clients' scrutiny by the integrity of a certain foundation. Accessibility refers to the framework that gives users of the framework true access to information. The word "classification" implies that data within a given frame is shielded from unauthorised access and public display. Consequently, a PC network is considered to be fully completed if the primary objectives of these three standards have been satisfactorily met. To assist in achieving these objectives, Intrusion Detection Systems have been developed with the fundamental purpose of scanning incoming traffic on computer networks for malicious intrusions.
Priya, D Divya, Kiran, Ajmeera, Purushotham, P.  2022.  Lightweight Intrusion Detection System(L-IDS) for the Internet of Things. 2022 International Conference on Advancements in Smart, Secure and Intelligent Computing (ASSIC). :1—4.
Internet of Things devices collect and share data (IoT). Internet connections and emerging technologies like IoT offer privacy and security challenges, and this trend is anticipated to develop quickly. Internet of Things intrusions are everywhere. Businesses are investing more to detect these threats. Institutes choose accurate testing and verification procedures. In recent years, IoT utilisation has increasingly risen in healthcare. Where IoT applications gained popular among technologists. IoT devices' energy limits and scalability raise privacy and security problems. Experts struggle to make IoT devices more safe and private. This paper provides a machine-learning-based IDS for IoT network threats (ML-IDS). This study aims to implement ML-supervised IDS for IoT. We're going with a centralised, lightweight IDS. Here, we compare seven popular categorization techniques on three data sets. The decision tree algorithm shows the best intrusion detection results.
Nisha, T N, Pramod, Dhanya.  2022.  Sequential event-based detection of network attacks on CSE CIC IDS 2018 data set – Application of GSP and IPAM Algorithm. 2022 International Conference on Computing, Communication, Security and Intelligent Systems (IC3SIS). :1—7.
Network attacks are always a nightmare for the network administrators as it eats away a huge wavelength and disturbs the normal working of many critical services in the network. Network behavior based profiling and detection is considered to be an accepted method; but the modeling data and method is always a big concern. The network event-based profiling is getting acceptance as they are sequential in nature and the sequence depicts the behavior of the system. This sequential network events can be analyzed using different techniques to create a profile for anomaly detection. In this paper we examine the possibility of two techniques for sequential event analysis using Modified GSP and IPAM algorithm. We evaluate the performance of these algorithms on the CSE-CIC-IDS 2018 data set to benchmark the performance. This experiment is different from other anomaly-based detection which evaluates the features of the dataset to detect the abnormalities. The performance of the algorithms on the dataset is then confirmed by the pattern evolving from the analysis and the indications it provides for early detection of network attacks.
Waluyo, Adam, Cahyono, M.T. Setiyo, Mahfud, Ahmad Zainudin.  2022.  Digital Forensic Analysis on Caller ID Spoofing Attack. 2022 7th International Workshop on Big Data and Information Security (IWBIS). :95—100.
Misuse of caller ID spoofing combined with social engineering has the potential as a means to commit other crimes, such as fraud, theft, leaking sensitive information, spreading hoaxes, etc. The appropriate forensic technique must be carried out to support the verification and collection of evidence related to these crimes. In this research, a digital forensic analysis was carried out on the BlueStacks emulator, Redmi 5A smartphone, and SIM card which is a device belonging to the victim and attacker to carry out caller ID spoofing attacks. The forensic analysis uses the NIST SP 800-101 R1 guide and forensic tools FTK imager, Oxygen Forensic Detective, and Paraben’s E3. This research aims to determine the artifacts resulting from caller ID spoofing attacks to assist in mapping and finding digital evidence. The result of this research is a list of digital evidence findings in the form of a history of outgoing calls, incoming calls, caller ID from the source of the call, caller ID from the destination of the call, the time the call started, the time the call ended, the duration of the call, IMSI, ICCID, ADN, and TMSI.
2023-08-03
Colombier, Brice, Drăgoi, Vlad-Florin, Cayrel, Pierre-Louis, Grosso, Vincent.  2022.  Profiled Side-Channel Attack on Cryptosystems Based on the Binary Syndrome Decoding Problem. IEEE Transactions on Information Forensics and Security. 17:3407–3420.
The NIST standardization process for post-quantum cryptography has been drawing the attention of researchers to the submitted candidates. One direction of research consists in implementing those candidates on embedded systems and that exposes them to physical attacks in return. The Classic McEliece cryptosystem, which is among the four finalists of round 3 in the Key Encapsulation Mechanism category, builds its security on the hardness of the syndrome decoding problem, which is a classic hard problem in code-based cryptography. This cryptosystem was recently targeted by a laser fault injection attack leading to message recovery. Regrettably, the attack setting is very restrictive and it does not tolerate any error in the faulty syndrome. Moreover, it depends on the very strong attacker model of laser fault injection, and does not apply to optimised implementations of the algorithm that make optimal usage of the machine words capacity. In this article, we propose a to change the angle and perform a message-recovery attack that relies on side-channel information only. We improve on the previously published work in several key aspects. First, we show that side-channel information, obtained with power consumption analysis, is sufficient to obtain an integer syndrome, as required by the attack framework. This is done by leveraging classic machine learning techniques that recover the Hamming weight information very accurately. Second, we put forward a computationally-efficient method, based on a simple dot product and information-set decoding algorithms, to recover the message from the, possibly inaccurate, recovered integer syndrome. Finally, we present a masking countermeasure against the proposed attack.
Conference Name: IEEE Transactions on Information Forensics and Security
Brian, Gianluca, Faonio, Antonio, Obremski, Maciej, Ribeiro, João, Simkin, Mark, Skórski, Maciej, Venturi, Daniele.  2022.  The Mother of All Leakages: How to Simulate Noisy Leakages via Bounded Leakage (Almost) for Free. IEEE Transactions on Information Theory. 68:8197–8227.
We show that the most common flavors of noisy leakage can be simulated in the information-theoretic setting using a single query of bounded leakage, up to a small statistical simulation error and a slight loss in the leakage parameter. The latter holds true in particular for one of the most used noisy-leakage models, where the noisiness is measured using the conditional average min-entropy (Naor and Segev, CRYPTO’09 and SICOMP’12). Our reductions between noisy and bounded leakage are achieved in two steps. First, we put forward a new leakage model (dubbed the dense leakage model) and prove that dense leakage can be simulated in the information-theoretic setting using a single query of bounded leakage, up to small statistical distance. Second, we show that the most common noisy-leakage models fall within the class of dense leakage, with good parameters. Third, we prove lower bounds on the amount of bounded leakage required for simulation with sub-constant error, showing that our reductions are nearly optimal. In particular, our results imply that useful general simulation of noisy leakage based on statistical distance and mutual information is impossible. We also provide a complete picture of the relationships between different noisy-leakage models. Our result finds applications to leakage-resilient cryptography, where we are often able to lift security in the presence of bounded leakage to security in the presence of noisy leakage, both in the information-theoretic and in the computational setting. Remarkably, this lifting procedure makes only black-box use of the underlying schemes. Additionally, we show how to use lower bounds in communication complexity to prove that bounded-collusion protocols (Kumar, Meka, and Sahai, FOCS’19) for certain functions do not only require long transcripts, but also necessarily need to reveal enough information about the inputs.
Conference Name: IEEE Transactions on Information Theory