Visible to the public Biblio

Found 5879 results

Filters: Keyword is composability  [Clear All Filters]
2023-07-13
Alqarni, Mansour, Azim, Akramul.  2022.  Mining Large Data to Create a Balanced Vulnerability Detection Dataset for Embedded Linux System. 2022 IEEE/ACM International Conference on Big Data Computing, Applications and Technologies (BDCAT). :83–91.
The security of embedded systems is particularly crucial given the prevalence of embedded devices in daily life, business, and national defense. Firmware for embedded systems poses a serious threat to the safety of society, business, and the nation because of its robust concealment, difficulty in detection, and extended maintenance cycle. This technology is now an essential part of the contemporary experience, be it in the smart office, smart restaurant, smart home, or even the smart traffic system. Despite the fact that these systems are often fairly effective, the rapid expansion of embedded systems in smart cities have led to inconsistencies and misalignments between secured and unsecured systems, necessitating the development of secure, hacker-proof embedded systems. To solve this issue, we created a sizable, original, and objective dataset that is based on the latest Linux vulnerabilities for identifying the embedded system vulnerabilities and we modified a cutting-edge machine learning model for the Linux Kernel. The paper provides an updated EVDD and analysis of an extensive dataset for embedded system based vulnerability detection and also an updated state of the art deep learning model for embedded system vulnerability detection. We kept our dataset available for all researchers for future experiments and implementation.
Veremey, Anastasiya, Kustov, Vladimir, Ravi, Renjith V.  2022.  Security Research and Design of Hierarchical Embedded Information Security System. 2022 Second International Conference on Computer Science, Engineering and Applications (ICCSEA). :1–6.
In this paper, the reader’s attention is directed to the problem of inefficiency of the add-on information security tools, that are installed in operating systems, including virtualization systems. The paper shows the disadvantages, that significantly affect the maintenance of an adequate level of security in the operating system. The results allowing to control all areas hierarchical of protection of the specialized operating system are presented.
Armoush, Ashraf.  2022.  Towards the Integration of Security and Safety Patterns in the Design of Safety-Critical Embedded Systems. 2022 4th International Conference on Applied Automation and Industrial Diagnostics (ICAAID). 1:1–6.
The design of safety-critical embedded systems is a complex process that involves the reuse of proven solutions to fulfill a set of requirements. While safety is considered as the major requirement to be satisfied in safety-critical embedded systems, the security attacks can affect the security as well as the safety of these systems. Therefore, ensuring the security of the safety-critical embedded systems is as important as ensuring the safety requirements. The concept of design patterns, which provides common solutions to widely recurring design problems, have been extensively engaged in the design of the hardware and software in many fields, including embedded systems. However, there is an inadequacy of experience with security patterns in the field of safety-critical embedded systems. To address this problem, this paper proposes an approach to integrate security patterns with safety patterns in the design of safety-critical embedded systems. Moreover, it presents a customized representation for security patterns to be more relevant to the common safety patterns in the context of safety-critical embedded systems.
Zhang, Zhun, Hao, Qiang, Xu, Dongdong, Wang, Jiqing, Ma, Jinhui, Zhang, Jinlei, Liu, Jiakang, Wang, Xiang.  2022.  Real-Time Instruction Execution Monitoring with Hardware-Assisted Security Monitoring Unit in RISC-V Embedded Systems. 2022 8th Annual International Conference on Network and Information Systems for Computers (ICNISC). :192–196.

Embedded systems involve an integration of a large number of intellectual property (IP) blocks to shorten chip's time to market, in which, many IPs are acquired from the untrusted third-party suppliers. However, existing IP trust verification techniques cannot provide an adequate security assurance that no hardware Trojan was implanted inside the untrusted IPs. Hardware Trojans in untrusted IPs may cause processor program execution failures by tampering instruction code and return address. Therefore, this paper presents a secure RISC-V embedded system by integrating a Security Monitoring Unit (SMU), in which, instruction integrity monitoring by the fine-grained program basic blocks and function return address monitoring by the shadow stack are implemented, respectively. The hardware-assisted SMU is tested and validated that while CPU executes a CoreMark program, the SMU does not incur significant performance overhead on providing instruction security monitoring. And the proposed RISC-V embedded system satisfies good balance between performance overhead and resource consumption.

Hao, Qiang, Xu, Dongdong, Zhang, Zhun, Wang, Jiqing, Le, Tong, Wang, Jiawei, Zhang, Jinlei, Liu, Jiakang, Ma, Jinhui, Wang, Xiang.  2022.  A Hardware-Assisted Security Monitoring Method for Jump Instruction and Jump Address in Embedded Systems. 2022 8th Annual International Conference on Network and Information Systems for Computers (ICNISC). :197–202.
With the development of embedded systems towards networking and intelligence, the security threats they face are becoming more difficult to prevent. Existing protection methods make it difficult to monitor jump instructions and their target addresses for tampering by attackers at the low hardware implementation overhead and performance overhead. In this paper, a hardware-assisted security monitoring module is designed to monitor the integrity of jump instructions and jump addresses when executing programs. The proposed method has been implemented on the Xilinx Kintex-7 FPGA platform. Experiments show that this method is able to effectively monitor tampering attacks on jump instructions as well as target addresses while the embedded system is executing programs.
Wu, Yan.  2022.  Information Security Management System for Archives Management Based on Embedded Artificial Intelligence. 2022 International Conference on Artificial Intelligence of Things and Crowdsensing (AIoTCs). :340–344.
Archival services are one of the main functions of an information security management system for archival management, and the conversion and updating of archival intelligence services is an important means to meet the increasing diversity and wisdom of the age of intelligence. The purpose of this paper is to study an information security management system for archival management based on embedded artificial intelligence. The implementation of an embedded control management system for intelligent filing cabinets is studied. Based on a configurable embedded system security model, the access control process and the functional modules of the system based on a secure call cache are analysed. Software for wireless RF communication was designed, and two remote control options were designed using CAN technology and wireless RF technology. Tests have shown that the system is easy to use, feature-rich and reliable, and can meet the needs of different users for regular control of file room management.
Kaliyaperumal, Karthikeyan, Sammy, F..  2022.  An Efficient Key Generation Scheme for Secure Sharing of Patients Health Records using Attribute Based Encryption. 2022 International Conference on Communication, Computing and Internet of Things (IC3IoT). :1–6.
Attribute Based Encryption that solely decrypts the cipher text's secret key attribute. Patient information is maintained on trusted third party servers in medical applications. Before sending health records to other third party servers, it is essential to protect them. Even if data are encrypted, there is always a danger of privacy violation. Scalability problems, access flexibility, and account revocation are the main security challenges. In this study, individual patient health records are encrypted utilizing a multi-authority ABE method that permits a multiple number of authorities to govern the attributes. A strong key generation approach in the classic Attribute Based Encryption is proposed in this work, which assures the robust protection of health records while also demonstrating its effectiveness. Simulation is done by using CloudSim Simulator and Statistical reports were generated using Cloud Reports. Efficiency, computation time and security of our proposed scheme are evaluated. The simulation results reveal that the proposed key generation technique is more secure and scalable.
Guo, Chunxu, Wang, Yi, Chen, Fupeng, Ha, Yajun.  2022.  Unified Lightweight Authenticated Encryption for Resource-Constrained Electronic Control Unit. 2022 29th IEEE International Conference on Electronics, Circuits and Systems (ICECS). :1–4.
Electronic control units (ECU) have been widely used in modern resource-constrained automotive systems, com-municating through the controller area network (CAN) bus. However, they are still facing man-in-the-middle attacks in CAN bus due to the absence of a more effective authenti-cation/encryption mechanism. In this paper, to defend against the attacks more effectively, we propose a unified lightweight authenticated encryption that integrates recent prevalent cryp-tography standardization Isap and Ascon.First, we reuse the common permutation block of ISAP and Asconto support authenticated encryption and encryption/decryption. Second, we provide a flexible and independent switch between authenticated encryption and encryption/decryption to support specific application requirements. Third, we adopt standard CAESAR hardware API as the interface standard to support compatibility between different interfaces or platforms. Experimental results show that our proposed unified lightweight authenticated encryption can reduce 26.09% area consumption on Xilinx Artix-7 FPGA board compared with the state-of-the-arts. In addition, the encryption overhead of the proposed design for transferring one CAN data frame is \textbackslashmathbf10.75 \textbackslashmu s using Asconand \textbackslashmathbf72.25 \textbackslashmu s using ISAP at the frequency of 4 MHz on embedded devices.
Chen, Chen, Wang, Xingjun, Huang, Guanze, Liu, Guining.  2022.  An Efficient Randomly-Selective Video Encryption Algorithm. 2022 IEEE 8th International Conference on Computer and Communications (ICCC). :1287–1293.
A randomly-selective encryption (RSE) algorithm is proposed for HEVC video bitstream in this paper. It is a pioneer algorithm with high efficiency and security. The encryption process is completely independent of video compression process. A randomly-selective sequence (RSS) based on the RC4 algorithm is designed to determine the extraction position in the video bitstream. The extracted bytes are encrypted by AES-CTR to obtain the encrypted video. Based on the high efficiency video coding (HEV C) bitstream, the simulation and analysis results show that the proposed RSE algorithm has low time complexity and high security, which is a promising tool for video cryptographic applications.
Jeyakumar, D, Chidambarathanu, K., Pradeepkumar, S., Anish, T.P..  2022.  OUTFS+. An Efficient User-Side Encrypted File System Using IBE With Parallel Encryption. 2022 6th International Conference on Trends in Electronics and Informatics (ICOEI). :760–766.
Cloud computing is a fast growing field that provides the user with resources like software, infrastructure and virtual hardware processing power. The steady rise of cloud computing in recent times allowed large companies and even individual users to move towards working with cloud storage systems. However, the risks of leakage of uploaded data in the cloud storage and the questions about the privacy of such systems are becoming a huge problem. Security incidents occur frequently everywhere around the world. Sometimes, data leak may occur at the server side by hackers for their own profit. Data being shared must be encrypted before outsourcing it to the cloud storage. Existing encryption/decryption systems utilize large computational power and have troubles managing the files. This paper introduces a file system that is a more efficient, virtual, with encryption/decryption scheme using parallel encryption. To make encryption and decryption of files easier, Parallel encryption is used in place of serial encryption which is integrated with Identity-Based Encryption in the file system. The proposed file system aims to secure files, reduce the chances of file stored in cloud storage getting leaked thus providing better security. The proposed file system, OutFS+, is more robust and secure than its predecessor, OutFS. Cloud outsourcing takes place faster and the files can be downloaded to the OutFS+ instance on the other side. Moreover, OutFS+ is secure since it is a virtual layer on the operating system and can be unmounted whenever the user wants to.
Kori, Prachi, Cecil, Kanchan.  2022.  Secure Wireless Sensor Network Design Using a New Method of High-Speed Lightweight Encryption. 2022 6th International Conference On Computing, Communication, Control And Automation (ICCUBEA. :1–8.
Data streaming over a wireless network such as Wireless Sensor Networks, where wireless terminals (like PDAs, mobile phones, palmtops) access in data conferencing system, new challenges will be brought about. goal for this paper is to propose a high-speed lightweight encryption (HSLE) for low computational capability controller of WSN, HSLE scheme which reduces latency overhead by modifying existing approaches in order to encrypting data using a probabilistic encryption of data blocks. Proposed work is also useful when we communicate our confidential data on WSN or IoT it should be secure, we just have to save an encrypted data on cloud servers. proposed work is a new key-based algorithm and uses HSLE encryption instead for high end AES. Proposed methods cause significant speed enhancement for data encryption with similar security, in addition, it is best suited in order to communication between hand-held devices such as mobile phones, palmtops etc. algorithm may be used between sites where processing capacity and battery power are limited and efficient encryption is main necessity. This work is implemented on MATLAB and a wireless sensor network of maximum 100 nodes developed for testing the proposed network node encryption system, the time delay observed for the communication in 100 nodes WSN is less in compare with the other available works.
ISSN: 2771-1358
Kumar, Aytha Ramesh, Sharmila, Yadavalli.  2022.  FPGA Implementation of High Performance Hybrid Encryption Standard. 2022 International Conference on Recent Trends in Microelectronics, Automation, Computing and Communications Systems (ICMACC). :103–107.
Now a day's data hacking is the main issue for cloud computing, protecting a data there are so many methods in that one most usable method is the data Encryption. Process of Encryption is the converting a data into an un readable form using encryption key, encoded version that can only be read with authorized access to the decryption key. This paper presenting a simple, energy and area efficient method for endurance issue in secure resistive main memories. In this method, by employing the random characteristics of the encrypted data encoded by the Advanced Encryption Standard (AES) as well as a rotational shift operation. Random Shifter is simple hardware implementation and energy efficient method. It is considerably smaller than that of other recently proposed methods. Random Shifter technique used for secure memory with other error correction methods. Due to their reprogram ability, Field Programmable Gate Arrays (FPGA) are a popular choice for the hardware implementation of cryptographic algorithms. The proposed random shifter algorithm for AES and DES (Hybrid) data is implemented in the VIRTEX FPGA and it is efficient and suitable for hardware-critical applications. This Paper is implemented using model sim and Xilinx 14.5 version.
Senthilnayaki, B., Venkatalakshami, K., Dharanyadevi, P., G, Nivetha, Devi, A..  2022.  An Efficient Medical Image Encryption Using Magic Square and PSO. 2022 International Conference on Smart Technologies and Systems for Next Generation Computing (ICSTSN). :1–5.
Encryption is essential for protecting sensitive data, especially images, against unauthorized access and exploitation. The goal of this work is to develop a more secure image encryption technique for image-based communication. The approach uses particle swarm optimization, chaotic map and magic square to offer an ideal encryption effect. This work introduces a novel encryption algorithm based on magic square. The image is first broken down into single-byte blocks, which are then replaced with the value of the magic square. The encrypted images are then utilized as particles and a starting assembly for the PSO optimization process. The correlation coefficient applied to neighboring pixels is used to define the ideal encrypted image as a fitness function. The results of the experiments reveal that the proposed approach can effectively encrypt images with various secret keys and has a decent encryption effect. As a result of the proposed work improves the public key method's security while simultaneously increasing memory economy.
Mammenp, Asha, KN, Sreehari, Bhakthavatchalu, Ramesh.  2022.  Implementation of Efficient Hybrid Encryption Technique. 2022 2nd International Conference on Intelligent Technologies (CONIT). :1–4.
Security troubles of restricted sources communications are vital. Existing safety answers aren't sufficient for restricted sources gadgets in phrases of Power Area and Ef-ficiency‘. Elliptic curves cryptosystem (ECC) is area efficent for restricted sources gadgets extra than different uneven cryp-to systems because it gives a better safety degree with equal key sizes compared to different present techniques. In this paper, we studied a lightweight hybrid encryption technique that makes use of set of rules primarily based totally on AES for the Plain text encription and Elliptic Curve Diffie-Hellman (ECDH) protocol for Key encryption. The simplicity of AES implementation makes it light weight and the complexity of ECDH make it secure. The design is simulated using Spyder Tool, Modelsim and Implemented using Xilinx Vivado the effects display that the proposed lightweight Model offers a customary security degree with decreased computing capacity. we proposed a key authentication system for enhanced security along with an Idea to implement the project with multimedia input on FPGA
Salman, Zainab, Alomary, Alauddin.  2022.  An Efficient Approach to Reduce the Encryption and Decryption Time Based on the Concept of Unique Values. 2022 International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies (3ICT). :535–540.
Data security has become the most important issue in every institution or company. With the existence of hackers, intruders, and third parties on the cloud, securing data has become more challenging. This paper uses a hybrid encryption method that is based on the Elliptic Curve Cryptography (ECC) and Fully Homomorphic Encryption (FHE). ECC is used as a lightweight encryption algorithm that can provide a good level of security. Besides, FHE is used to enable data computation on the encrypted data in the cloud. In this paper, the concept of unique values is combined with the hybrid encryption method. Using the concept of unique values contributes to decreasing the encryption and decryption time obviously. To evaluate the performance of the combined encryption method, the provided results are compared with the ones in the encryption method without using the concept of unique values. Experiments show that the combined encryption method can reduce the encryption time up to 43% and the decryption time up to 56%.
ISSN: 2770-7466
2023-07-12
Li, Fenghua, Chen, Cao, Guo, Yunchuan, Fang, Liang, Guo, Chao, Li, Zifu.  2022.  Efficiently Constructing Topology of Dynamic Networks. 2022 IEEE International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :44—51.
Accurately constructing dynamic network topology is one of the core tasks to provide on-demand security services to the ubiquitous network. Existing schemes cannot accurately construct dynamic network topologies in time. In this paper, we propose a novel scheme to construct the ubiquitous network topology. Firstly, ubiquitous network nodes are divided into three categories: terminal node, sink node, and control node. On this basis, we propose two operation primitives (i.e., addition and subtraction) and three atomic operations (i.e., intersection, union, and fusion), and design a series of algorithms to describe the network change and construct the network topology. We further use our scheme to depict the specific time-varying network topologies, including Satellite Internet and Internet of things. It demonstrates that their communication and security protection modes can be efficiently and accurately constructed on our scheme. The simulation and theoretical analysis also prove that the efficiency of our scheme, and effectively support the orchestration of protection capabilities.
Xiang, Peng, Peng, ChengWei, Li, Qingshan.  2022.  Hierarchical Association Features Learning for Network Traffic Recognition. 2022 International Conference on Information Processing and Network Provisioning (ICIPNP). :129—133.
With the development of network technology, identifying specific traffic has become important in network monitoring and security. However, designing feature sets that can accurately describe network traffic is still an urgent problem. Most of existing researches cannot realize effectively the identification of targets, and don't perform well in the complex and dynamic network environment. Aiming at these problems, we propose a novel method in this paper, which learns correlation features of network traffic based on the hierarchical structure. Firstly, the method learns the spatial-temporal features using convolutional neural networks (CNNs) and the bidirectional long short-term memory networks (Bi-LSTMs), then builds network topology to capture dependency characteristics between sessions and learns the context-related features through the graph attention networks (GATs). Finally, the network traffic session is classified using a fully connected network. The experimental results show that our method can effectively improve the detection ability and achieve a better classification performance overall.
Maity, Ilora, Vu, Thang X., Chatzinotas, Symeon, Minardi, Mario.  2022.  D-ViNE: Dynamic Virtual Network Embedding in Non-Terrestrial Networks. 2022 IEEE Wireless Communications and Networking Conference (WCNC). :166—171.
In this paper, we address the virtual network embedding (VNE) problem in non-terrestrial networks (NTNs) enabling dynamic changes in the virtual network function (VNF) deployment to maximize the service acceptance rate and service revenue. NTNs such as satellite networks involve highly dynamic topology and limited resources in terms of rate and power. VNE in NTNs is a challenge because a static strategy under-performs when new service requests arrive or the network topology changes unexpectedly due to failures or other events. Existing solutions do not consider the power constraint of satellites and rate limitation of inter-satellite links (ISLs) which are essential parameters for dynamic adjustment of existing VNE strategy in NTNs. In this work, we propose a dynamic VNE algorithm that selects a suitable VNE strategy for new and existing services considering the time-varying network topology. The proposed scheme, D-ViNE, increases the service acceptance ratio by 8.51% compared to the benchmark scheme TS-MAPSCH.
Tang, Muyi.  2022.  Research on Edge Network Security Technology Based on DHR. 2022 IEEE International Conference on Advances in Electrical Engineering and Computer Applications (AEECA). :614—617.
This paper examines how the extent of the network has expanded from the traditional computer Internet to the field of edge computing based on mobile communication technology with the in-depth development of the mobile Internet and the Internet of Things. In particular, the introduction of 5G has enabled massive edge computing nodes to build a high-performance, energy-efficient and low-latency mobile edge computing architecture. Traditional network security technologies and methods are not fully applicable in this environment. The focus of this paper is on security protection for edge networks. Using virtualized networks builds a dynamic heterogeneous redundancy security model (i.e., DHR). It first designs and evaluates the DHR security model, then constructs the required virtualized heterogeneous entity set, and finally constructs a DHR-based active defense scheme. Compared with existing network security solutions, the security protection technology of the edge network studied this time has a better protective effect against the unknown security threats facing the edge network.
Salman, Fatema, Jedidi, Ahmed.  2022.  Trust-Aware Security system for Dynamic Southbound Communication in Software Defined Network. 2022 International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies (3ICT). :93—97.
The vast proliferation of the connected devices makes the operation of the traditional networks so complex and drops the network performance, particularly, failure cases. In fact, a novel solution is proposed to enable the management of the network resources and services named software defined network (SDN). SDN splits the data plane and the control plane by centralizing all the control plane on one common platform. Further, SDN makes the control plane programmable by offering high flexibility for the network management and monitoring mostly in failure cases. However, the main challenge in SDN is security that is presented as the first barrier for its development. Security in SDN is presented at various levels and forms, particularly, the communication between the data plane and control plane that presents a weak point in SDN framework. In this article, we suggest a new security framework focused on the combination between the trust and awareness concepts (TAS-SDN) for a dynamic southbound communication SDN. Further, TAS-SDN uses trust levels to establish a secure communication between the control plane and data plane. As a result, we discuss the implementation and the performance of TAS-SDN which presents a promote security solution in terms of time execution, complexity and scalability for SDN.
Xiao, Weidong, Zhang, Xu, Wang, Dongbin.  2022.  Cross-Security Domain Dynamic Orchestration Algorithm of Network Security Functions. 2022 7th IEEE International Conference on Data Science in Cyberspace (DSC). :413—419.
To prevent all sorts of attacks, the technology of security service function chains (SFC) is proposed in recent years, it becomes an attractive research highlights. Dynamic orchestration algorithm can create SFC according to the resource usage of network security functions. The current research on creating SFC focuses on a single domain. However in reality the large and complex networks are divided into security domains according to different security levels and managed separately. Therefore, we propose a cross-security domain dynamic orchestration algorithm to create SFC for network security functions based on ant colony algorithm(ACO) and consider load balancing, shortest path and minimum delay as optimization objectives. We establish a network security architecture based on the proposed algorithm, which is suitable for the industrial vertical scenarios, solves the deployment problem of the dynamic orchestration algorithm. Simulation results verify that our algorithm achieves the goal of creating SFC across security domains and demonstrate its performance in creating service function chains to resolve abnormal traffic flows.
2023-07-11
Zhong, Fuli.  2022.  Resilient Control for Time-Delay Systems in Cyber-Physical Environment Using State Estimation and Switching Moving Defense. 2022 2nd International Conference on Computer Science, Electronic Information Engineering and Intelligent Control Technology (CEI). :204—212.
Cybersecurity for complex systems operating in cyber-physical environment is becoming more and more critical because of the increasing cyber threats and systems' vulnerabilities. Security by design is quite an important method to ensure the systems' normal operations and services supply. For the aim of coping with cyber-attack affections properly, this paper studies the resilient security control issue for time-varying delay systems in cyber-physical environment with state estimation and moving defense approach. Time-varying delay factor induced by communication and network transmission, or data acquisition and processing, or certain cyber-attacks, is considered. To settle the cyber-attacks from the perspective of system control, a dynamic system model considering attacks is presented, and the corresponding switched control model with time-varying delay against attacks is formulated. Then the state estimator for system states is designed to overcome the problem that certain states cannot be measured directly. Estimated states serve as the input of the resilient security controller. Sufficient conditions of the stability of the observer and control system are derived out with the Lyapunov stability analysis method jointly. A moving defense strategy based on anomaly detection and random switching is presented, in which an optimization problem for calculating the proper switching probability of each candidate actuator-controller pair is given. Simulation experimental results are shown to illustrate the effectiveness of the presented scheme.
Wang, Rongzhen, Zhang, Bing, Wen, Shixi, Zhao, Yuan.  2022.  Security Platoon Control of Connected Vehicle Systems under DoS Attacks and Dynamic Uncertainty. IECON 2022 – 48th Annual Conference of the IEEE Industrial Electronics Society. :1—5.
In this paper, the distributed security control problem of connected vehicle systems (CVSs) is investigated under denial of service (DoS) attacks and uncertain dynamics. DoS attacks usually block communication channels, resulting in the vehicle inability to receive data from the neighbors. In severe cases, it will affect the control performance of CVSs and even cause vehicle collision and life threats. In order to keep the vehicle platoon stable when the DoS attacks happen, we introduce a random characteristic to describe the impact of the packet loss behavior caused by them. Dependent on the length of the lost packets, we propose a security platoon control protocol to deal with it. Furthermore, the security platoon control problem of CVSs is transformed into a stable problem of Markov jump systems (MJSs) with uncertain parameters. Next, the Lyapunov function method and linear matrix inequations (LMI) are used to analyze the internal stability and design controller. Finally, several simulation results are presented to illustrate the effectiveness of the proposed method.
Gritti, Fabio, Pagani, Fabio, Grishchenko, Ilya, Dresel, Lukas, Redini, Nilo, Kruegel, Christopher, Vigna, Giovanni.  2022.  HEAPSTER: Analyzing the Security of Dynamic Allocators for Monolithic Firmware Images. 2022 IEEE Symposium on Security and Privacy (SP). :1082—1099.
Dynamic memory allocators are critical components of modern systems, and developers strive to find a balance between their performance and their security. Unfortunately, vulnerable allocators are routinely abused as building blocks in complex exploitation chains. Most of the research regarding memory allocators focuses on popular and standardized heap libraries, generally used by high-end devices such as desktop systems and servers. However, dynamic memory allocators are also extensively used in embedded systems but they have not received much scrutiny from the security community.In embedded systems, a raw firmware image is often the only available piece of information, and finding heap vulnerabilities is a manual and tedious process. First of all, recognizing a memory allocator library among thousands of stripped firmware functions can quickly become a daunting task. Moreover, emulating firmware functions to test for heap vulnerabilities comes with its own set of challenges, related, but not limited, to the re-hosting problem.To fill this gap, in this paper we present HEAPSTER, a system that automatically identifies the heap library used by a monolithic firmware image, and tests its security with symbolic execution and bounded model checking. We evaluate HEAPSTER on a dataset of 20 synthetic monolithic firmware images — used as ground truth for our analyses — and also on a dataset of 799 monolithic firmware images collected in the wild and used in real-world devices. Across these datasets, our tool identified 11 different heap management library (HML) families containing a total of 48 different variations. The security testing performed by HEAPSTER found that all the identified variants are vulnerable to at least one critical heap vulnerability. The results presented in this paper show a clear pattern of poor security standards, and raise some concerns over the security of dynamic memory allocators employed by IoT devices.
Sennewald, Tom, Song, Xinya, Westermann, Dirk.  2022.  Assistance System to Consider Dynamic Phenomena for Secure System Operation. 2022 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe). :1—5.
This contribution provides the implementation of a digital twin-based assistance system to be used in future control rooms. By applying parameter estimation methods, the dynamic model in the digital twin is an accurate representation of the physical system. Therefore, a dynamic security assessment (DSA) that is highly dependent on a correctly parameterized dynamic model, can give more reliable information to a system operator in the control room. The assistance system is studied on the Cigré TB 536 benchmark system with an obscured set of machine parameters. Through the proposed parameter estimation approach the original parameters could be estimated, changing, and increasing the statement of the DSA in regard to imminent instabilities.