Gao, Ruijun, Guo, Qing, Juefei-Xu, Felix, Yu, Hongkai, Fu, Huazhu, Feng, Wei, Liu, Yang, Wang, Song.
2022.
Can You Spot the Chameleon? Adversarially Camouflaging Images from Co-Salient Object Detection 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). :2140–2149.
Co-salient object detection (CoSOD) has recently achieved significant progress and played a key role in retrieval-related tasks. However, it inevitably poses an entirely new safety and security issue, i.e., highly personal and sensitive content can potentially be extracting by powerful CoSOD methods. In this paper, we address this problem from the perspective of adversarial attacks and identify a novel task: adversarial co-saliency attack. Specially, given an image selected from a group of images containing some common and salient objects, we aim to generate an adversarial version that can mislead CoSOD methods to predict incorrect co-salient regions. Note that, compared with general white-box adversarial attacks for classification, this new task faces two additional challenges: (1) low success rate due to the diverse appearance of images in the group; (2) low transferability across CoSOD methods due to the considerable difference between CoSOD pipelines. To address these challenges, we propose the very first blackbox joint adversarial exposure and noise attack (Jadena), where we jointly and locally tune the exposure and additive perturbations of the image according to a newly designed high-feature-level contrast-sensitive loss function. Our method, without any information on the state-of-the-art CoSOD methods, leads to significant performance degradation on various co-saliency detection datasets and makes the co-salient objects undetectable. This can have strong practical benefits in properly securing the large number of personal photos currently shared on the Internet. Moreover, our method is potential to be utilized as a metric for evaluating the robustness of CoSOD methods.
Li, Yunchen, Luo, Da.
2022.
Adversarial Audio Detection Method Based on Transformer. 2022 International Conference on Machine Learning and Intelligent Systems Engineering (MLISE). :77–82.
Speech recognition technology has been applied to all aspects of our daily life, but it faces many security issues. One of the major threats is the adversarial audio examples, which may tamper the recognition results of the acoustic speech recognition system (ASR). In this paper, we propose an adversarial detection framework to detect adversarial audio examples. The method is based on the transformer self-attention mechanism. Spectrogram features are extracted from the audio and divided into patches. Position information are embedded and then fed into transformer encoder. Experimental results show that the method achieves good performance with the detection accuracy of above 96.5% under the white-box attacks and blackbox attacks, and noisy circumstances. Even when detecting adversarial examples generated by the unknown attacks, it also achieves satisfactory results.
Shahid, Jahanzeb, Muhammad, Zia, Iqbal, Zafar, Khan, Muhammad Sohaib, Amer, Yousef, Si, Weisheng.
2022.
SAT: Integrated Multi-agent Blackbox Security Assessment Tool using Machine Learning. 2022 2nd International Conference on Artificial Intelligence (ICAI). :105–111.
The widespread adoption of eCommerce, iBanking, and eGovernment institutions has resulted in an exponential rise in the use of web applications. Due to a large number of users, web applications have become a prime target of cybercriminals who want to steal Personally Identifiable Information (PII) and disrupt business activities. Hence, there is a dire need to audit the websites and ensure information security. In this regard, several web vulnerability scanners are employed for vulnerability assessment of web applications but attacks are still increasing day by day. Therefore, a considerable amount of research has been carried out to measure the effectiveness and limitations of the publicly available web scanners. It is identified that most of the publicly available scanners possess weaknesses and do not generate desired results. In this paper, the evaluation of publicly available web vulnerability scanners is performed against the top ten OWASP11OWASP® The Open Web Application Security Project (OWASP) is an online community that produces comprehensive articles, documentation, methodologies, and tools in the arena of web and mobile security. vulnerabilities and their performance is measured on the precision of their results. Based on these results, we proposed an Integrated Multi-Agent Blackbox Security Assessment Tool (SAT) for the security assessment of web applications. Research has proved that the vulnerabilities assessment results of the SAT are more extensive and accurate.
Zhang, Junjian, Tan, Hao, Deng, Binyue, Hu, Jiacen, Zhu, Dong, Huang, Linyi, Gu, Zhaoquan.
2022.
NMI-FGSM-Tri: An Efficient and Targeted Method for Generating Adversarial Examples for Speaker Recognition. 2022 7th IEEE International Conference on Data Science in Cyberspace (DSC). :167–174.
Most existing deep neural networks (DNNs) are inexplicable and fragile, which can be easily deceived by carefully designed adversarial example with tiny undetectable noise. This allows attackers to cause serious consequences in many DNN-assisted scenarios without human perception. In the field of speaker recognition, the attack for speaker recognition system has been relatively mature. Most works focus on white-box attacks that assume the information of the DNN is obtainable, and only a few works study gray-box attacks. In this paper, we study blackbox attacks on the speaker recognition system, which can be applied in the real world since we do not need to know the system information. By combining the idea of transferable attack and query attack, our proposed method NMI-FGSM-Tri can achieve the targeted goal by misleading the system to recognize any audio as a registered person. Specifically, our method combines the Nesterov accelerated gradient (NAG), the ensemble attack and the restart trigger to design an attack method that generates the adversarial audios with good performance to attack blackbox DNNs. The experimental results show that the effect of the proposed method is superior to the extant methods, and the attack success rate can reach as high as 94.8% even if only one query is allowed.
Moraffah, Raha, Liu, Huan.
2022.
Query-Efficient Target-Agnostic Black-Box Attack. 2022 IEEE International Conference on Data Mining (ICDM). :368–377.
Adversarial attacks have recently been proposed to scrutinize the security of deep neural networks. Most blackbox adversarial attacks, which have partial access to the target through queries, are target-specific; e.g., they require a well-trained surrogate that accurately mimics a given target. In contrast, target-agnostic black-box attacks are developed to attack any target; e.g., they learn a generalized surrogate that can adapt to any target via fine-tuning on samples queried from the target. Despite their success, current state-of-the-art target-agnostic attacks require tremendous fine-tuning steps and consequently an immense number of queries to the target to generate successful attacks. The high query complexity of these attacks makes them easily detectable and thus defendable. We propose a novel query-efficient target-agnostic attack that trains a generalized surrogate network to output the adversarial directions iv.r.t. the inputs and equip it with an effective fine-tuning strategy that only fine-tunes the surrogate when it fails to provide useful directions to generate the attacks. Particularly, we show that to effectively adapt to any target and generate successful attacks, it is sufficient to fine-tune the surrogate with informative samples that help the surrogate get out of the failure mode with additional information on the target’s local behavior. Extensive experiments on CIFAR10 and CIFAR-100 datasets demonstrate that the proposed target-agnostic approach can generate highly successful attacks for any target network with very few fine-tuning steps and thus significantly smaller number of queries (reduced by several order of magnitudes) compared to the state-of-the-art baselines.
Kahla, Mostafa, Chen, Si, Just, Hoang Anh, Jia, Ruoxi.
2022.
Label-Only Model Inversion Attacks via Boundary Repulsion. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). :15025–15033.
Recent studies show that the state-of-the-art deep neural networks are vulnerable to model inversion attacks, in which access to a model is abused to reconstruct private training data of any given target class. Existing attacks rely on having access to either the complete target model (whitebox) or the model's soft-labels (blackbox). However, no prior work has been done in the harder but more practical scenario, in which the attacker only has access to the model's predicted label, without a confidence measure. In this paper, we introduce an algorithm, Boundary-Repelling Model Inversion (BREP-MI), to invert private training data using only the target model's predicted labels. The key idea of our algorithm is to evaluate the model's predicted labels over a sphere and then estimate the direction to reach the target class's centroid. Using the example of face recognition, we show that the images reconstructed by BREP-MI successfully reproduce the semantics of the private training data for various datasets and target model architectures. We compare BREP-MI with the state-of-the-art white-box and blackbox model inversion attacks, and the results show that despite assuming less knowledge about the target model, BREP-MI outperforms the blackbox attack and achieves comparable results to the whitebox attack. Our code is available online.11https://github.com/m-kahla/Label-Only-Model-Inversion-Attacks-via-Boundary-Repulsion
Zhou, Linjun, Cui, Peng, Zhang, Xingxuan, Jiang, Yinan, Yang, Shiqiang.
2022.
Adversarial Eigen Attack on BlackBox Models. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). :15233–15241.
Black-box adversarial attack has aroused much research attention for its difficulty on nearly no available information of the attacked model and the additional constraint on the query budget. A common way to improve attack efficiency is to transfer the gradient information of a white-box substitute model trained on an extra dataset. In this paper, we deal with a more practical setting where a pre-trained white-box model with network parameters is provided without extra training data. To solve the model mismatch problem between the white-box and black-box models, we propose a novel algorithm EigenBA by systematically integrating gradient-based white-box method and zeroth-order optimization in black-box methods. We theoretically show the optimal directions of perturbations for each step are closely related to the right singular vectors of the Jacobian matrix of the pretrained white-box model. Extensive experiments on ImageNet, CIFAR-10 and WebVision show that EigenBA can consistently and significantly outperform state-of-the-art baselines in terms of success rate and attack efficiency.
Zhang, Jie, Li, Bo, Xu, Jianghe, Wu, Shuang, Ding, Shouhong, Zhang, Lei, Wu, Chao.
2022.
Towards Efficient Data Free Blackbox Adversarial Attack. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). :15094–15104.
Classic black-box adversarial attacks can take advantage of transferable adversarial examples generated by a similar substitute model to successfully fool the target model. However, these substitute models need to be trained by target models' training data, which is hard to acquire due to privacy or transmission reasons. Recognizing the limited availability of real data for adversarial queries, recent works proposed to train substitute models in a data-free black-box scenario. However, their generative adversarial networks (GANs) based framework suffers from the convergence failure and the model collapse, resulting in low efficiency. In this paper, by rethinking the collaborative relationship between the generator and the substitute model, we design a novel black-box attack framework. The proposed method can efficiently imitate the target model through a small number of queries and achieve high attack success rate. The comprehensive experiments over six datasets demonstrate the effectiveness of our method against the state-of-the-art attacks. Especially, we conduct both label-only and probability-only attacks on the Microsoft Azure online model, and achieve a 100% attack success rate with only 0.46% query budget of the SOTA method [49].
Wu, Xiaoliang, Rajan, Ajitha.
2022.
Catch Me If You Can: Blackbox Adversarial Attacks on Automatic Speech Recognition using Frequency Masking. 2022 29th Asia-Pacific Software Engineering Conference (APSEC). :169–178.
Automatic speech recognition (ASR) models are used widely in applications for voice navigation and voice control of domestic appliances. ASRs have been misused by attackers to generate malicious outputs by attacking the deep learning component within ASRs. To assess the security and robustnesss of ASRs, we propose techniques within our framework SPAT that generate blackbox (agnostic to the DNN) adversarial attacks that are portable across ASRs. This is in contrast to existing work that focuses on whitebox attacks that are time consuming and lack portability. Our techniques generate adversarial attacks that have no human audible difference by manipulating the input speech signal using a psychoacoustic model that maintains the audio perturbations below the thresholds of human perception. We propose a framework SPAT with three attack generation techniques based on the psychoacoustic concept and frame selection techniques to selectively target the attack. We evaluate portability and effectiveness of our techniques using three popular ASRs and two input audio datasets using the metrics- Word Error Rate (WER) of output transcription, Similarity to original audio, attack Success Rate on different ASRs and Detection score by a defense system. We found our adversarial attacks were portable across ASRs, not easily detected by a state-of the-art defense system, and had significant difference in output transcriptions while sounding similar to original audio.