Visible to the public Biblio

Filters: Keyword is recurrent neural nets  [Clear All Filters]
2020-08-03
Al-Emadi, Sara, Al-Ali, Abdulla, Mohammad, Amr, Al-Ali, Abdulaziz.  2019.  Audio Based Drone Detection and Identification using Deep Learning. 2019 15th International Wireless Communications Mobile Computing Conference (IWCMC). :459–464.
In recent years, unmanned aerial vehicles (UAVs) have become increasingly accessible to the public due to their high availability with affordable prices while being equipped with better technology. However, this raises a great concern from both the cyber and physical security perspectives since UAVs can be utilized for malicious activities in order to exploit vulnerabilities by spying on private properties, critical areas or to carry dangerous objects such as explosives which makes them a great threat to the society. Drone identification is considered the first step in a multi-procedural process in securing physical infrastructure against this threat. In this paper, we present drone detection and identification methods using deep learning techniques such as Convolutional Neural Network (CNN), Recurrent Neural Network (RNN) and Convolutional Recurrent Neural Network (CRNN). These algorithms will be utilized to exploit the unique acoustic fingerprints of the flying drones in order to detect and identify them. We propose a comparison between the performance of different neural networks based on our dataset which features audio recorded samples of drone activities. The major contribution of our work is to validate the usage of these methodologies of drone detection and identification in real life scenarios and to provide a robust comparison of the performance between different deep neural network algorithms for this application. In addition, we are releasing the dataset of drone audio clips for the research community for further analysis.
2020-06-29
Sun, Wenwen, Li, Yi, Guan, Shaopeng.  2019.  An Improved Method of DDoS Attack Detection for Controller of SDN. 2019 IEEE 2nd International Conference on Computer and Communication Engineering Technology (CCET). :249–253.
For controllers of Software Defined Network (SDN), Distributed Denial of Service (DDoS) attacks are still the simplest and most effective way to attack. Aiming at this problem, a real-time DDoS detection attack method for SDN controller is proposed. The method first uses the entropy to detect whether the flow is abnormal. After the abnormal warning is issued, the flow entry of the OpenFlow switch is obtained, and the DDoS attack feature in the SDN environment is analyzed to extract important features related to the attack. The BiLSTM-RNN neural network algorithm is used to train the data set, and the BiLSTM model is generated to classify the real-time traffic to realize the DDoS attack detection. Experiments show that, compared with other methods, this method can efficiently implement DDoS attack traffic detection and reduce controller overhead in SDN environment.
2020-05-18
Chen, Long.  2019.  Assertion Detection in Clinical Natural Language Processing: A Knowledge-Poor Machine Learning Approach. 2019 IEEE 2nd International Conference on Information and Computer Technologies (ICICT). :37–40.
Natural language processing (NLP) have been recently used to extract clinical information from free text in Electronic Health Record (EHR). In clinical NLP one challenge is that the meaning of clinical entities is heavily affected by assertion modifiers such as negation, uncertain, hypothetical, experiencer and so on. Incorrect assertion assignment could cause inaccurate diagnosis of patients' condition or negatively influence following study like disease modeling. Thus, clinical NLP systems which can detect assertion status of given target medical findings (e.g. disease, symptom) in clinical context are highly demanded. Here in this work, we propose a deep-learning system based on word embedding, RNN and attention mechanism (more specifically: Attention-based Bidirectional Long Short-Term Memory networks) for assertion detection in clinical notes. Unlike previous state-of-art methods which require knowledge input or feature engineering, our system is a knowledge poor machine learning system and can be easily extended or transferred to other domains. The evaluation of our system on public benchmarking corpora demonstrates that a knowledge poor deep-learning system can also achieve high performance for detecting negation and assertions comparing to state-of-the-art systems.
Fahad, S.K. Ahammad, Yahya, Abdulsamad Ebrahim.  2018.  Inflectional Review of Deep Learning on Natural Language Processing. 2018 International Conference on Smart Computing and Electronic Enterprise (ICSCEE). :1–4.
In the age of knowledge, Natural Language Processing (NLP) express its demand by a huge range of utilization. Previously NLP was dealing with statically data. Contemporary time NLP is doing considerably with the corpus, lexicon database, pattern reorganization. Considering Deep Learning (DL) method recognize artificial Neural Network (NN) to nonlinear process, NLP tools become increasingly accurate and efficient that begin a debacle. Multi-Layer Neural Network obtaining the importance of the NLP for its capability including standard speed and resolute output. Hierarchical designs of data operate recurring processing layers to learn and with this arrangement of DL methods manage several practices. In this paper, this resumed striving to reach a review of the tools and the necessary methodology to present a clear understanding of the association of NLP and DL for truly understand in the training. Efficiency and execution both are improved in NLP by Part of speech tagging (POST), Morphological Analysis, Named Entity Recognition (NER), Semantic Role Labeling (SRL), Syntactic Parsing, and Coreference resolution. Artificial Neural Networks (ANN), Time Delay Neural Networks (TDNN), Recurrent Neural Network (RNN), Convolution Neural Networks (CNN), and Long-Short-Term-Memory (LSTM) dealings among Dense Vector (DV), Windows Approach (WA), and Multitask learning (MTL) as a characteristic of Deep Learning. After statically methods, when DL communicate the influence of NLP, the individual form of the NLP process and DL rule collaboration was started a fundamental connection.
2020-05-11
Nikolov, Dimitar, Kordev, Iliyan, Stefanova, Stela.  2018.  Concept for network intrusion detection system based on recurrent neural network classifier. 2018 IEEE XXVII International Scientific Conference Electronics - ET. :1–4.
This paper presents the effects of problem based learning project on a high-school student in Technology school “Electronic systems” associated with Technical University Sofia. The problem is creating an intrusion detection system for Apache HTTP Server with duration 6 months. The intrusion detection system is based on a recurrent neural network classifier namely long-short term memory units.
Althubiti, Sara A., Jones, Eric Marcell, Roy, Kaushik.  2018.  LSTM for Anomaly-Based Network Intrusion Detection. 2018 28th International Telecommunication Networks and Applications Conference (ITNAC). :1–3.
Due to the massive amount of the network traffic, attackers have a great chance to cause a huge damage to the network system or its users. Intrusion detection plays an important role in ensuring security for the system by detecting the attacks and the malicious activities. In this paper, we utilize CIDDS dataset and apply a deep learning approach, Long-Short-Term Memory (LSTM), to implement intrusion detection system. This research achieves a reasonable accuracy of 0.85.
2020-05-08
Huang, Yifan, Chung, Wingyan, Tang, Xinlin.  2018.  A Temporal Recurrent Neural Network Approach to Detecting Market Anomaly Attacks. 2018 IEEE International Conference on Intelligence and Security Informatics (ISI). :160—162.

In recent years, the spreading of malicious social media messages about financial stocks has threatened the security of financial market. Market Anomaly Attacks is an illegal practice in the stock or commodities markets that induces investors to make purchase or sale decisions based on false information. Identifying these threats from noisy social media datasets remains challenging because of the long time sequence in these social media postings, ambiguous textual context and the difficulties for traditional deep learning approaches to handle both temporal and text dependent data such as financial social media messages. This research developed a temporal recurrent neural network (TRNN) approach to capturing both time and text sequence dependencies for intelligent detection of market anomalies. We tested the approach by using financial social media of U.S. technology companies and their stock returns. Compared with traditional neural network approaches, TRNN was found to more efficiently and effectively classify abnormal returns.

Dionísio, Nuno, Alves, Fernando, Ferreira, Pedro M., Bessani, Alysson.  2019.  Cyberthreat Detection from Twitter using Deep Neural Networks. 2019 International Joint Conference on Neural Networks (IJCNN). :1—8.

To be prepared against cyberattacks, most organizations resort to security information and event management systems to monitor their infrastructures. These systems depend on the timeliness and relevance of the latest updates, patches and threats provided by cyberthreat intelligence feeds. Open source intelligence platforms, namely social media networks such as Twitter, are capable of aggregating a vast amount of cybersecurity-related sources. To process such information streams, we require scalable and efficient tools capable of identifying and summarizing relevant information for specified assets. This paper presents the processing pipeline of a novel tool that uses deep neural networks to process cybersecurity information received from Twitter. A convolutional neural network identifies tweets containing security-related information relevant to assets in an IT infrastructure. Then, a bidirectional long short-term memory network extracts named entities from these tweets to form a security alert or to fill an indicator of compromise. The proposed pipeline achieves an average 94% true positive rate and 91% true negative rate for the classification task and an average F1-score of 92% for the named entity recognition task, across three case study infrastructures.

Wu, Peilun, Guo, Hui.  2019.  LuNet: A Deep Neural Network for Network Intrusion Detection. 2019 IEEE Symposium Series on Computational Intelligence (SSCI). :617—624.

Network attack is a significant security issue for modern society. From small mobile devices to large cloud platforms, almost all computing products, used in our daily life, are networked and potentially under the threat of network intrusion. With the fast-growing network users, network intrusions become more and more frequent, volatile and advanced. Being able to capture intrusions in time for such a large scale network is critical and very challenging. To this end, the machine learning (or AI) based network intrusion detection (NID), due to its intelligent capability, has drawn increasing attention in recent years. Compared to the traditional signature-based approaches, the AI-based solutions are more capable of detecting variants of advanced network attacks. However, the high detection rate achieved by the existing designs is usually accompanied by a high rate of false alarms, which may significantly discount the overall effectiveness of the intrusion detection system. In this paper, we consider the existence of spatial and temporal features in the network traffic data and propose a hierarchical CNN+RNN neural network, LuNet. In LuNet, the convolutional neural network (CNN) and the recurrent neural network (RNN) learn input traffic data in sync with a gradually increasing granularity such that both spatial and temporal features of the data can be effectively extracted. Our experiments on two network traffic datasets show that compared to the state-of-the-art network intrusion detection techniques, LuNet not only offers a high level of detection capability but also has a much low rate of false positive-alarm.

2020-04-13
M.R., Anala, Makker, Malika, Ashok, Aakanksha.  2019.  Anomaly Detection in Surveillance Videos. 2019 26th International Conference on High Performance Computing, Data and Analytics Workshop (HiPCW). :93–98.
Every public or private area today is preferred to be under surveillance to ensure high levels of security. Since the surveillance happens round the clock, data gathered as a result is huge and requires a lot of manual work to go through every second of the recorded videos. This paper presents a system which can detect anomalous behaviors and alarm the user on the type of anomalous behavior. Since there are a myriad of anomalies, the classification of anomalies had to be narrowed down. There are certain anomalies which are generally seen and have a huge impact on public safety, such as explosions, road accidents, assault, shooting, etc. To narrow down the variations, this system can detect explosion, road accidents, shooting, and fighting and even output the frame of their occurrence. The model has been trained with videos belonging to these classes. The dataset used is UCF Crime dataset. Learning patterns from videos requires the learning of both spatial and temporal features. Convolutional Neural Networks (CNN) extract spatial features and Long Short-Term Memory (LSTM) networks learn the sequences. The classification, using an CNN-LSTM model achieves an accuracy of 85%.
2020-03-23
Bibi, Iram, Akhunzada, Adnan, Malik, Jahanzaib, Ahmed, Ghufran, Raza, Mohsin.  2019.  An Effective Android Ransomware Detection Through Multi-Factor Feature Filtration and Recurrent Neural Network. 2019 UK/ China Emerging Technologies (UCET). :1–4.
With the increasing diversity of Android malware, the effectiveness of conventional defense mechanisms are at risk. This situation has endorsed a notable interest in the improvement of the exactitude and scalability of malware detection for smart devices. In this study, we have proposed an effective deep learning-based malware detection model for competent and improved ransomware detection in Android environment by looking at the algorithm of Long Short-Term Memory (LSTM). The feature selection has been done using 8 different feature selection algorithms. The 19 important features are selected through simple majority voting process by comparing results of all feature filtration techniques. The proposed algorithm is evaluated using android malware dataset (CI-CAndMal2017) and standard performance parameters. The proposed model outperforms with 97.08% detection accuracy. Based on outstanding performance, we endorse our proposed algorithm to be efficient in malware and forensic analysis.
2020-01-28
Xuan, Shichang, Wang, Huanhong, Gao, Duo, Chung, Ilyong, Wang, Wei, Yang, Wu.  2019.  Network Penetration Identification Method Based on Interactive Behavior Analysis. 2019 Seventh International Conference on Advanced Cloud and Big Data (CBD). :210–215.

The Internet has gradually penetrated into the national economy, politics, culture, military, education and other fields. Due to its openness, interconnectivity and other characteristics, the Internet is vulnerable to all kinds of malicious attacks. The research uses a honeynet to collect attacker information, and proposes a network penetration recognition technology based on interactive behavior analysis. Using Sebek technology to capture the attacker's keystroke record, time series modeling of the keystroke sequences of the interaction behavior is proposed, using a Recurrent Neural Network. The attack recognition method is constructed by using Long Short-Term Memory that solves the problem of gradient disappearance, gradient explosion and long-term memory shortage in ordinary Recurrent Neural Network. Finally, the experiment verifies that the short-short time memory network has a high accuracy rate for the recognition of penetration attacks.

2020-01-27
Qureshi, Ayyaz-Ul-Haq, Larijani, Hadi, Javed, Abbas, Mtetwa, Nhamoinesu, Ahmad, Jawad.  2019.  Intrusion Detection Using Swarm Intelligence. 2019 UK/ China Emerging Technologies (UCET). :1–5.
Recent advances in networking and communication technologies have enabled Internet-of-Things (IoT) devices to communicate more frequently and faster. An IoT device typically transmits data over the Internet which is an insecure channel. Cyber attacks such as denial-of-service (DoS), man-in-middle, and SQL injection are considered as big threats to IoT devices. In this paper, an anomaly-based intrusion detection scheme is proposed that can protect sensitive information and detect novel cyber-attacks. The Artificial Bee Colony (ABC) algorithm is used to train the Random Neural Network (RNN) based system (RNN-ABC). The proposed scheme is trained on NSL-KDD Train+ and tested for unseen data. The experimental results suggest that swarm intelligence and RNN successfully classify novel attacks with an accuracy of 91.65%. Additionally, the performance of the proposed scheme is also compared with a hybrid multilayer perceptron (MLP) based intrusion detection system using sensitivity, mean of mean squared error (MMSE), the standard deviation of MSE (SDMSE), best mean squared error (BMSE) and worst mean squared error (WMSE) parameters. All experimental tests confirm the robustness and high accuracy of the proposed scheme.
2020-01-20
Huang, Yongjie, Yang, Qiping, Qin, Jinghui, Wen, Wushao.  2019.  Phishing URL Detection via CNN and Attention-Based Hierarchical RNN. 2019 18th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/13th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :112–119.
Phishing websites have long been a serious threat to cyber security. For decades, many researchers have been devoted to developing novel techniques to detect phishing websites automatically. While state-of-the-art solutions can achieve superior performances, they require substantial manual feature engineering and are not adept at detecting newly emerging phishing attacks. Therefore, developing techniques that can detect phishing websites automatically and handle zero-day phishing attacks swiftly is still an open challenge in this area. In this work, we propose PhishingNet, a deep learning-based approach for timely detection of phishing Uniform Resource Locators (URLs). Specifically, we use a Convolutional Neural Network (CNN) module to extract character-level spatial feature representations of URLs; meanwhile, we employ an attention-based hierarchical Recurrent Neural Network(RNN) module to extract word-level temporal feature representations of URLs. We then fuse these feature representations via a three-layer CNN to build accurate feature representations of URLs, on which we train a phishing URL classifier. Extensive experiments on a verified dataset collected from the Internet demonstrate that the feature representations extracted automatically are conducive to the improvement of the generalization ability of our approach on newly emerging URLs, which makes our approach achieve competitive performance against other state-of-the-art approaches.
2019-12-18
Essaid, Meryam, Kim, DaeYong, Maeng, Soo Hoon, Park, Sejin, Ju, Hong Taek.  2019.  A Collaborative DDoS Mitigation Solution Based on Ethereum Smart Contract and RNN-LSTM. 2019 20th Asia-Pacific Network Operations and Management Symposium (APNOMS). :1–6.

Recently Distributed Denial-of-Service (DDoS) are becoming more and more sophisticated, which makes the existing defence systems not capable of tolerating by themselves against wide-ranging attacks. Thus, collaborative protection mitigation has become a needed alternative to extend defence mechanisms. However, the existing coordinated DDoS mitigation approaches either they require a complex configuration or are highly-priced. Blockchain technology offers a solution that reduces the complexity of signalling DDoS system, as well as a platform where many autonomous systems (Ass) can share hardware resources and defence capabilities for an effective DDoS defence. In this work, we also used a Deep learning DDoS detection system; we identify individual DDoS attack class and also define whether the incoming traffic is legitimate or attack. By classifying the attack traffic flow separately, our proposed mitigation technique could deny only the specific traffic causing the attack, instead of blocking all the traffic coming towards the victim(s).

2019-12-16
Xue, Zijun, Ko, Ting-Yu, Yuchen, Neo, Wu, Ming-Kuang Daniel, Hsieh, Chu-Cheng.  2018.  Isa: Intuit Smart Agent, A Neural-Based Agent-Assist Chatbot. 2018 IEEE International Conference on Data Mining Workshops (ICDMW). :1423–1428.
Hiring seasonal workers in call centers to provide customer service is a common practice in B2C companies. The quality of service delivered by both contracting and employee customer service agents depends heavily on the domain knowledge available to them. When observing the internal group messaging channels used by agents, we found that similar questions are often asked repetitively by different agents, especially from less experienced ones. The goal of our work is to leverage the promising advances in conversational AI to provide a chatbot-like mechanism for assisting agents in promptly resolving a customer's issue. In this paper, we develop a neural-based conversational solution that employs BiLSTM with attention mechanism and demonstrate how our system boosts the effectiveness of customer support agents. In addition, we discuss the design principles and the necessary considerations for our system. We then demonstrate how our system, named "Isa" (Intuit Smart Agent), can help customer service agents provide a high-quality customer experience by reducing customer wait time and by applying the knowledge accumulated from customer interactions in future applications.
Alam, Mehreen.  2018.  Neural Encoder-Decoder based Urdu Conversational Agent. 2018 9th IEEE Annual Ubiquitous Computing, Electronics Mobile Communication Conference (UEMCON). :901–905.
Conversational agents have very much become part of our lives since the renaissance of neural network based "neural conversational agents". Previously used manually annotated and rule based methods lacked the scalability and generalization capabilities of the neural conversational agents. A neural conversational agent has two parts: at one end an encoder understands the question while the other end a decoder prepares and outputs the corresponding answer to the question asked. Both the parts are typically designed using recurrent neural network and its variants and trained in an end-to-end fashion. Although conversation agents for other languages have been developed, Urdu language has seen very less progress in building of conversational agents. Especially recent state of the art neural network based techniques have not been explored yet. In this paper, we design an attention driven deep encoder-decoder based neural conversational agent for Urdu language. Overall, we make following contributions we (i) create a dataset of 5000 question-answer pairs, and (ii) present a new deep encoder-decoder based conversational agent for Urdu language. For our work, we limit the knowledge base of our agent to general knowledge regarding Pakistan. Our best model has the BLEU score of 58 and gives syntactically and semantically correct answers in majority of the cases.
2019-12-09
Khokhlov, Igor, Jain, Chinmay, Miller-Jacobson, Ben, Heyman, Andrew, Reznik, Leonid, Jacques, Robert St..  2018.  MeetCI: A Computational Intelligence Software Design Automation Framework. 2018 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). :1-8.

Computational Intelligence (CI) algorithms/techniques are packaged in a variety of disparate frameworks/applications that all vary with respect to specific supported functionality and implementation decisions that drastically change performance. Developers looking to employ different CI techniques are faced with a series of trade-offs in selecting the appropriate library/framework. These include resource consumption, features, portability, interface complexity, ease of parallelization, etc. Considerations such as language compatibility and familiarity with a particular library make the choice of libraries even more difficult. The paper introduces MeetCI, an open source software framework for computational intelligence software design automation that facilitates the application design decisions and their software implementation process. MeetCI abstracts away specific framework details of CI techniques designed within a variety of libraries. This allows CI users to benefit from a variety of current frameworks without investigating the nuances of each library/framework. Using an XML file, developed in accordance with the specifications, the user can design a CI application generically, and utilize various CI software without having to redesign their entire technology stack. Switching between libraries in MeetCI is trivial and accessing the right library to satisfy a user's goals can be done easily and effectively. The paper discusses the framework's use in design of various applications. The design process is illustrated with four different examples from expert systems and machine learning domains, including the development of an expert system for security evaluation, two classification problems and a prediction problem with recurrent neural networks.

2019-12-02
Yang, Shouguo, Shi, Zhiqiang, Zhang, Guodong, Li, Mingxuan, Ma, Yuan, Sun, Limin.  2019.  Understand Code Style: Efficient CNN-Based Compiler Optimization Recognition System. ICC 2019 - 2019 IEEE International Conference on Communications (ICC). :1–6.
Compiler optimization level recognition can be applied to vulnerability discovery and binary analysis. Due to the exists of many different compilation optimization options, the difference in the contents of the binary file is very complicated. There are thousands of compiler optimization algorithms and multiple different processor architectures, so it is very difficult to manually analyze binary files and recognize its compiler optimization level with rules. This paper first proposes a CNN-based compiler optimization level recognition model: BinEye. The system extracts semantic and structural differences and automatically recognize the compiler optimization levels. The model is designed to be very suitable for binary file processing and is easy to understand. We built a dataset containing 80028 binary files for the model training and testing. Our proposed model achieves an accuracy of over 97%. At the same time, BinEye is a fully CNN-based system and it has a faster forward calculation speed, at least 8 times faster than the normal RNN-based model. Through our analysis of the model output, we successfully found the difference in assembly codes caused by the different compiler optimization level. This means that the model we proposed is interpretable. Based on our model, we propose a method to analyze the code differences caused by different compiler optimization levels, which has great guiding significance for analyzing closed source compilers and binary security analysis.
2019-11-12
Zhang, Xian, Ben, Kerong, Zeng, Jie.  2018.  Cross-Entropy: A New Metric for Software Defect Prediction. 2018 IEEE International Conference on Software Quality, Reliability and Security (QRS). :111-122.

Defect prediction is an active topic in software quality assurance, which can help developers find potential bugs and make better use of resources. To improve prediction performance, this paper introduces cross-entropy, one common measure for natural language, as a new code metric into defect prediction tasks and proposes a framework called DefectLearner for this process. We first build a recurrent neural network language model to learn regularities in source code from software repository. Based on the trained model, the cross-entropy of each component can be calculated. To evaluate the discrimination for defect-proneness, cross-entropy is compared with 20 widely used metrics on 12 open-source projects. The experimental results show that cross-entropy metric is more discriminative than 50% of the traditional metrics. Besides, we combine cross-entropy with traditional metric suites together for accurate defect prediction. With cross-entropy added, the performance of prediction models is improved by an average of 2.8% in F1-score.

2019-10-07
Agrawal, R., Stokes, J. W., Selvaraj, K., Marinescu, M..  2019.  Attention in Recurrent Neural Networks for Ransomware Detection. ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). :3222–3226.

Ransomware, as a specialized form of malicious software, has recently emerged as a major threat in computer security. With an ability to lock out user access to their content, recent ransomware attacks have caused severe impact at an individual and organizational level. While research in malware detection can be adapted directly for ransomware, specific structural properties of ransomware can further improve the quality of detection. In this paper, we adapt the deep learning methods used in malware detection for detecting ransomware from emulation sequences. We present specialized recurrent neural networks for capturing local event patterns in ransomware sequences using the concept of attention mechanisms. We demonstrate the performance of enhanced LSTM models on a sequence dataset derived by the emulation of ransomware executables targeting the Windows environment.

2019-08-12
Liu, Y., Yang, Y., Shi, A., Jigang, P., Haowei, L..  2019.  Intelligent monitoring of indoor surveillance video based on deep learning. 2019 21st International Conference on Advanced Communication Technology (ICACT). :648–653.

With the rapid development of information technology, video surveillance system has become a key part in the security and protection system of modern cities. Especially in prisons, surveillance cameras could be found almost everywhere. However, with the continuous expansion of the surveillance network, surveillance cameras not only bring convenience, but also produce a massive amount of monitoring data, which poses huge challenges to storage, analytics and retrieval. The smart monitoring system equipped with intelligent video analytics technology can monitor as well as pre-alarm abnormal events or behaviours, which is a hot research direction in the field of surveillance. This paper combines deep learning methods, using the state-of-the-art framework for instance segmentation, called Mask R-CNN, to train the fine-tuning network on our datasets, which can efficiently detect objects in a video image while simultaneously generating a high-quality segmentation mask for each instance. The experiment show that our network is simple to train and easy to generalize to other datasets, and the mask average precision is nearly up to 98.5% on our own datasets.

2019-06-10
Kim, C. H., Kabanga, E. K., Kang, S..  2018.  Classifying Malware Using Convolutional Gated Neural Network. 2018 20th International Conference on Advanced Communication Technology (ICACT). :40-44.

Malware or Malicious Software, are an important threat to information technology society. Deep Neural Network has been recently achieving a great performance for the tasks of malware detection and classification. In this paper, we propose a convolutional gated recurrent neural network model that is capable of classifying malware to their respective families. The model is applied to a set of malware divided into 9 different families and that have been proposed during the Microsoft Malware Classification Challenge in 2015. The model shows an accuracy of 92.6% on the available dataset.

Alsulami, B., Mancoridis, S..  2018.  Behavioral Malware Classification Using Convolutional Recurrent Neural Networks. 2018 13th International Conference on Malicious and Unwanted Software (MALWARE). :103-111.

Behavioral malware detection aims to improve on the performance of static signature-based techniques used by anti-virus systems, which are less effective against modern polymorphic and metamorphic malware. Behavioral malware classification aims to go beyond the detection of malware by also identifying a malware's family according to a naming scheme such as the ones used by anti-virus vendors. Behavioral malware classification techniques use run-time features, such as file system or network activities, to capture the behavioral characteristic of running processes. The increasing volume of malware samples, diversity of malware families, and the variety of naming schemes given to malware samples by anti-virus vendors present challenges to behavioral malware classifiers. We describe a behavioral classifier that uses a Convolutional Recurrent Neural Network and data from Microsoft Windows Prefetch files. We demonstrate the model's improvement on the state-of-the-art using a large dataset of malware families and four major anti-virus vendor naming schemes. The model is effective in classifying malware samples that belong to common and rare malware families and can incrementally accommodate the introduction of new malware samples and families.

2019-05-08
Meng, F., Lou, F., Fu, Y., Tian, Z..  2018.  Deep Learning Based Attribute Classification Insider Threat Detection for Data Security. 2018 IEEE Third International Conference on Data Science in Cyberspace (DSC). :576–581.

With the evolution of network threat, identifying threat from internal is getting more and more difficult. To detect malicious insiders, we move forward a step and propose a novel attribute classification insider threat detection method based on long short term memory recurrent neural networks (LSTM-RNNs). To achieve high detection rate, event aggregator, feature extractor, several attribute classifiers and anomaly calculator are seamlessly integrated into an end-to-end detection framework. Using the CERT insider threat dataset v6.2 and threat detection recall as our performance metric, experimental results validate that the proposed threat detection method greatly outperforms k-Nearest Neighbor, Isolation Forest, Support Vector Machine and Principal Component Analysis based threat detection methods.