Visible to the public Biblio

Filters: Keyword is Clutter  [Clear All Filters]
2023-05-12
Gao, Lin, Battistelli, Giorgio, Chisci, Luigi.  2022.  Resilience of multi-object density fusion against cyber-attacks. 2022 11th International Conference on Control, Automation and Information Sciences (ICCAIS). :7–12.
Recently, it has been proposed to deal with fusion of multi-object densities exploiting the minimum information loss (MIL) rule, which has shown its superiority over generalized covariance intersection (GCI) fusion whenever sensor nodes have low detection probability. On the contrary, GCI shows better performance than MIL when dense clutter is involved in the measurements. In this paper, we are going to study the behavior of multi-object fusion with MIL and, respectively, GCI rules in the situation wherein the sensor network is exposed to cyber-attacks. Both theoretical and numerical analyses demonstrate that MIL is more robust than GCI fusion when the multi-sensor system is subject to a packet substitution attack.
ISSN: 2475-7896
2022-06-06
Papallas, Rafael, Dogar, Mehmet R..  2020.  Non-Prehensile Manipulation in Clutter with Human-In-The-Loop. 2020 IEEE International Conference on Robotics and Automation (ICRA). :6723–6729.
We propose a human-operator guided planning approach to pushing-based manipulation in clutter. Most recent approaches to manipulation in clutter employs randomized planning. The problem, however, remains a challenging one where the planning times are still in the order of tens of seconds or minutes, and the success rates are low for difficult instances of the problem. We build on these control-based randomized planning approaches, but we investigate using them in conjunction with human-operator input. In our framework, the human operator supplies a high-level plan, in the form of an ordered sequence of objects and their approximate goal positions. We present experiments in simulation and on a real robotic setup, where we compare the success rate and planning times of our human-in-the-loop approach with fully autonomous sampling-based planners. We show that with a minimal amount of human input, the low-level planner can solve the problem faster and with higher success rates.
2021-02-16
Jin, Y., Tian, Z., Zhou, M., Wang, H..  2020.  MuTrack: Multiparameter Based Indoor Passive Tracking System Using Commodity WiFi. ICC 2020 - 2020 IEEE International Conference on Communications (ICC). :1—6.
Device-Free Localization and Tracking (DFLT) acts as a key component for the contactless awareness applications such as elderly care and home security. However, the random phase errors in WiFi signal and weak target echoes submerged in background clutter signals are mainly obstacles for current DFLT systems. In this paper, we propose the design and implementation of MuTrack, a multiparameter based DFLT system using commodity WiFi devices with a single link. Firstly, we select an antenna with maximum reliability index as the reference antenna for signal sanitization in which the conjugate operation removes the random phase errors. Secondly, we design a multi-dimensional parameters estimator and then refine path parameters by optimizing the complete data of path components. Finally, the Hungarian Kalman Filter based tracking method is proposed to derive accurate locations from low-resolution parameter estimates. We extensively validate the proposed system in typical indoor environment and these experimental results show that MuTrack can achieve high tracking accuracy with the mean error of 0.82 m using only a single link.
2017-02-21
Z. Zhu, M. B. Wakin.  2015.  "Wall clutter mitigation and target detection using Discrete Prolate Spheroidal Sequences". 2015 3rd International Workshop on Compressed Sensing Theory and its Applications to Radar, Sonar and Remote Sensing (CoSeRa). :41-45.

We present a new method for mitigating wall return and a new greedy algorithm for detecting stationary targets after wall clutter has been cancelled. Given limited measurements of a stepped-frequency radar signal consisting of both wall and target return, our objective is to detect and localize the potential targets. Modulated Discrete Prolate Spheroidal Sequences (DPSS's) form an efficient basis for sampled bandpass signals. We mitigate the wall clutter efficiently within the compressive measurements through the use of a bandpass modulated DPSS basis. Then, in each step of an iterative algorithm for detecting the target positions, we use a modulated DPSS basis to cancel nearly all of the target return corresponding to previously selected targets. With this basis, we improve upon the target detection sensitivity of a Fourier-based technique.

2015-05-05
Jian Wu, Yongmei Jiang, Gangyao Kuang, Jun Lu, Zhiyong Li.  2014.  Parameter estimation for SAR moving target detection using Fractional Fourier Transform. Geoscience and Remote Sensing Symposium (IGARSS), 2014 IEEE International. :596-599.

This paper proposes an algorithm for multi-channel SAR ground moving target detection and estimation using the Fractional Fourier Transform(FrFT). To detect the moving target with low speed, the clutter is first suppressed by Displace Phase Center Antenna(DPCA), then the signal-to-clutter can be enhanced. Have suppressed the clutter, the echo of moving target remains and can be regarded as a chirp signal whose parameters can be estimated by FrFT. FrFT, one of the most widely used tools to time-frequency analysis, is utilized to estimate the Doppler parameters, from which the moving parameters, including the velocity and the acceleration can be obtained. The effectiveness of the proposed method is validated by the simulation.