Visible to the public Biblio

Filters: Keyword is attack detection  [Clear All Filters]
2018-12-10
Chen, Yue, Khandaker, Mustakimur, Wang, Zhi.  2017.  Pinpointing Vulnerabilities. Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security. :334–345.
Memory-based vulnerabilities are a major source of attack vectors. They allow attackers to gain unauthorized access to computers and their data. Previous research has made significant progress in detecting attacks. However, developers still need to locate and fix these vulnerabilities, a mostly manual and time-consuming process. They face a number of challenges. Particularly, the manifestation of an attack does not always coincide with the exploited vulnerabilities, and many attacks are hard to reproduce in the lab environment, leaving developers with limited information to locate them. In this paper, we propose Ravel, an architectural approach to pinpoint vulnerabilities from attacks. Ravel consists of an online attack detector and an offline vulnerability locator linked by a record & replay mechanism. Specifically, Ravel records the execution of a production system and simultaneously monitors it for attacks. If an attack is detected, the execution is replayed to reveal the targeted vulnerabilities by analyzing the program's memory access patterns under attack. We have built a prototype of Ravel based on the open-source FreeBSD operating system. The evaluation results in security and performance demonstrate that Ravel can effectively pinpoint various types of memory vulnerabilities and has low performance overhead.
2018-06-20
Chourasia, R., Boghey, R. K..  2017.  Novel IDS security against attacker routing misbehavior of packet dropping in MANET. 2017 7th International Conference on Cloud Computing, Data Science Engineering - Confluence. :456–460.

The MANET that is Mobile Ad hoc Network are forming a group of many nodes. They can interact with each other in limited area. All the Malicious nodes present in the MANET always disturb the usual performance of routing and that cause the degradation of dynamic performance of the network. Nodes which are malicious continuously try to stump the neighbor nodes during the process of routing as all neighbor nodes in the network merely forward the reply and response of neighboring. The intermediate nodes work is very responsible in routing procedure with continuous movement. During the work we have recommended one security scheme against the attack of packet dropping by malicious node in the network. The scheme which is recommended here will work to find attacker by using the concept of detection of link to forward the data or information between sender and receiver. The packet dropping on link, through node is detected and prevented by IDS security system. The scheme not only works to identify the nodes performing malicious activity however prevent them also. The identification of attacker is noticed by dropping of data packets in excsssessive quantity. The prevention of it can be done via choosing the alternate route somewhere the attacker performing malicious activity not available among the senders to receivers. The neighbor nodes or intermediary identify the malicious activity performer by the way of reply of malicious nodes which is confirmed. The recommended IDS system secures the network and also increases the performance after blocking malicious nodes that perform malicious activity in the network. The network performance measures in the presence of attack and secure IDS with the help of performance metrics like PDR, throughput etc. Planned secure routing improves data receiving and minimizes dropping data in network.

Saurabh, V. K., Sharma, R., Itare, R., Singh, U..  2017.  Cluster-based technique for detection and prevention of black-hole attack in MANETs. 2017 International conference of Electronics, Communication and Aerospace Technology (ICECA). 2:489–494.

Secure routing in the field of mobile ad hoc network (MANET) is one of the most flourishing areas of research. Devising a trustworthy security protocol for ad hoc routing is a challenging task due to the unique network characteristics such as lack of central authority, rapid node mobility, frequent topology changes, insecure operational environment, and confined availability of resources. Due to low configuration and quick deployment, MANETs are well-suited for emergency situations like natural disasters or military applications. Therefore, data transfer between two nodes should necessarily involve security. A black-hole attack in the mobile ad-hoc network (MANET) is an offense occurring due to malicious nodes, which attract the data packets by incorrectly publicizing a fresh route to the destination. A clustering direction in AODV routing protocol for the detection and prevention of black-hole attack in MANET has been put forward. Every member of the unit will ping once to the cluster head, to detect the exclusive difference between the number of data packets received and forwarded by the particular node. If the fault is perceived, all the nodes will obscure the contagious nodes from the network. The reading of the system performance has been done in terms of packet delivery ratio (PDR), end to end delay (ETD) throughput and Energy simulation inferences are recorded using ns2 simulator.

Patil, S. U..  2017.  Gray hole attack detection in MANETs. 2017 2nd International Conference for Convergence in Technology (I2CT). :20–26.

Networking system does not liable on static infrastructure that interconnects various nodes in identical broadcast range dynamically called as Mobile Ad-hoc Network. A Network requires adaptive connectivity due to this data transmission rate increased. In this paper, we designed developed a dynamic cluster head selection to detect gray hole attack in MANETs on the origin of battery power. MANETs has dynamic nodes so we delivered novel way to choose cluster head by self-stabilizing election algorithm followed by MD5 algorithm for security purposes. The Dynamic cluster based intrusion revealing system to detect gray hole attack in MANET. This Architecture enhanced performance in terms of Packet delivery ratio and throughput due to dynamic cluster based IDS, associating results of existing system with proposed system, throughput of network increased, end to end delay and routing overhead less compared with existing system due to gray hole nodes in the MANET. The future work can be prolonged by using security algorithm AES and MD6 and also by including additional node to create large network by comparing multiple routing protocol in MANETs.

Singh, E. P..  2017.  Re-joining of authorized nodes in MANETs using EGSR scheme and detection of internal attacks using 2ACK scheme. 2017 IEEE 8th Annual Ubiquitous Computing, Electronics and Mobile Communication Conference (UEMCON). :306–311.

One of the specially designated versatile networks, commonly referred to as MANET, performs on the basics that each and every one grouping in nodes totally operate in self-sorting out limits. In any case, performing in a group capacity maximizes quality and different sources. Mobile ad hoc network is a wireless infrastructureless network. Due to its unique features, various challenges are faced under MANET when the role of routing and its security comes into play. The review has demonstrated that the impact of failures during the information transmission has not been considered in the existing research. The majority of strategies for ad hoc networks just determines the path and transmits the data which prompts to packet drop in case of failures, thus resulting in low dependability. The majority of the existing research has neglected the use of the rejoining processing of the root nodes network. Most of the existing techniques are based on detecting the failures but the use of path re-routing has also been neglected in the existing methods. Here, we have proposed a method of path re-routing for managing the authorized nodes and managing the keys for group in ad hoc environment. Securing Schemes, named as 2ACK and the EGSR schemes have been proposed, which may be truly interacted to most of the routing protocol. The path re-routing has the ability to reduce the ratio of dropped packets. The comparative analysis has clearly shown that the proposed technique outperforms the available techniques in terms of various quality metrics.

Yadav, S., Trivedi, M. C., Singh, V. K., Kolhe, M. L..  2017.  Securing AODV routing protocol against black hole attack in MANET using outlier detection scheme. 2017 4th IEEE Uttar Pradesh Section International Conference on Electrical, Computer and Electronics (UPCON). :1–4.

Imposing security in MANET is very challenging and hot topic of research science last two decades because of its wide applicability in applications like defense. Number of efforts has been made in this direction. But available security algorithms, methods, models and framework may not completely solve this problem. Motivated from various existing security methods and outlier detection, in this paper novel simple but efficient outlier detection scheme based security algorithm is proposed to protect the Ad hoc on demand distance vector (AODV) reactive routing protocol from Black hole attack in mobile ad hoc environment. Simulation results obtained from network simulator tool evident the simplicity, robustness and effectiveness of the proposed algorithm over the original AODV protocol and existing methods.

Ansari, A., Waheed, M. A..  2017.  Flooding attack detection and prevention in MANET based on cross layer link quality assessment. 2017 International Conference on Intelligent Computing and Control Systems (ICICCS). :612–617.

Mobile Ad hoc Network (MANET) is one of the most popular dynamic topology reconfigurable local wireless network standards. Distributed Denial of Services is one of the most challenging threats in such a network. Flooding attack is one of the forms of DDoS attack whereby certain nodes in the network miss-utilizes the allocated channel by flooding packets with very high packet rate to it's neighbors, causing a fast energy loss to the neighbors and causing other legitimate nodes a denial of routing and transmission services from these nodes. In this work we propose a novel link layer assessment based flooding attack detection and prevention method. MAC layer of the nodes analyzes the signal properties and incorporated into the routing table by a cross layer MAC/Network interface. Once a node is marked as a flooding node, it is blacklisted in the routing table and is communicated to MAC through Network/MAC cross layer interface. Results shows that the proposed technique produces more accurate flooding attack detection in comparison to current state of art statistical analysis based flooding attack detection by network layer.

Dhende, S., Musale, S., Shirbahadurkar, S., Najan, A..  2017.  SAODV: Black hole and gray hole attack detection protocol in MANETs. 2017 International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET). :2391–2394.

A MANET is a group of wireless mobile nodes which cooperate in forwarding packets over a wireless links. Due to the lack of an infrastructure and open nature of MANET, security has become an essential and challenging issue. The mobile nature and selfishness of malicious node is a critical issue in causing the security problem. The MANETs are more defenseless to the security attacks; some of them are black hole and gray hole attacks. One of its key challenges is to find black hole attack. In this paper, researchers propose a secure AODV protocol (SAODV) for detection and removal of black hole and gray hole attacks in MANTEs. The proposed method is simulated using NS-2 and it seems that the proposed methodology is more secure than the existing one.

Kolade, Ayanwuyi T., Zuhairi, Megat F., Yafi, Eiad, Zheng, C. L..  2017.  Performance Analysis of Black Hole Attack in MANET. Proceedings of the 11th International Conference on Ubiquitous Information Management and Communication. :1:1–1:7.

The underlying element that supports the device communication in the MANET is the wireless connection capability. Each node has the ability to communicate with other nodes via the creation of routing path. However, due to the fact that nodes in MANET are autonomous and the routing paths created are only based on current condition of the network, some of the paths are extremely instable. In light of these shortcomings, many research works emphasizes on the improvement of routing path algorithm. Regardless of the application the MANET can support, the MANET possesses unique characteristics, which enables mobile nodes to form dynamic communication irrespective the availability of a fixed network. However the inherent nature of MANET has led to nodes in MANET to be vulnerable to denied services. A typical Denial of Service (DoS) in MANET is the Black Hole attack, caused by a malicious node, or a set of nodes advertising false routing updates. Typically, the malicious nodes are difficult to be detected. Each node is equipped with a particular type of routing protocol and voluntarily participates in relaying the packets. However, some nodes may not be genuine and has been tampered to behave maliciously, which causes the Black Hole attack. Several on demand routing protocol e.g. Ad hoc On Demand Distance Vector (AODV) and Dynamic Source Routing (DSR) are susceptible to such attack. In principle, the attack exploits the Route Request (RREQ) discovery operation and falsifies the sequence number and the shortest path information. The malicious nodes are able to utilize the loophole in the RREQ discovery process due to the absence of validation process. As a result, genuine RREQ packets are exploited and erroneously relayed to a false node(s). This paper highlights the effect Black Hole nodes to the network performance and therefore substantiates the previous work done [1]. In this paper, several simulation experiments are iterated using NS-2, which employed various scenarios and traffic loads. The simulation results show the presence of Black Hole nodes in a network can substantially affects the packet delivery ratio and throughput by as much as 100%.

Bhagat, S. P., Padiya, P., Marathe, N..  2017.  A generic request/reply based algorithm for detection of blackhole attack in MANET. 2017 International Conference On Smart Technologies For Smart Nation (SmartTechCon). :1044–1049.

Mobile Ad Hoc Network (MANET) technology provides intercommunication between different nodes where no infrastructure is available for communication. MANET is attracting many researcher attentions as it is cost effective and easy for implementation. Main challenging aspect in MANET is its vulnerability. In MANET nodes are very much vulnerable to attacks along with its data as well as data flowing through these nodes. One of the main reasons of these vulnerabilities is its communication policy which makes nodes interdependent for interaction and data flow. This mutual trust between nodes is exploited by attackers through injecting malicious node or replicating any legitimate node in MANET. One of these attacks is blackhole attack. In this study, the behavior of blackhole attack is discussed and have proposed a lightweight solution for blackhole attack which uses inbuilt functions.

2018-06-07
Lahrouni, Youssef, Pereira, Caroly, Bensaber, Boucif Amar, Biskri, Ismaïl.  2017.  Using Mathematical Methods Against Denial of Service (DoS) Attacks in VANET. Proceedings of the 15th ACM International Symposium on Mobility Management and Wireless Access. :17–22.

VANET network is a new technology on which future intelligent transport systems are based; its purpose is to develop the vehicular environment and make it more comfortable. In addition, it provides more safety for drivers and cars on the road. Therefore, we have to make this technology as secured as possible against many threats. As VANET is a subclass of MANET, it has inherited many security problems but with a different architecture and DOS attacks are one of them. In this paper, we have focused on DOS attacks that prevent users to receive the right information at the right moment. We have analyzed DOS attacks behavior and effects on the network using different mathematical models in order to find an efficient solution.

2018-03-05
Sugumar, G., Mathur, A..  2017.  Testing the Effectiveness of Attack Detection Mechanisms in Industrial Control Systems. 2017 IEEE International Conference on Software Quality, Reliability and Security Companion (QRS-C). :138–145.

Industrial Control Systems (ICS) are found in critical infrastructure such as for power generation and water treatment. When security requirements are incorporated into an ICS, one needs to test the additional code and devices added do improve the prevention and detection of cyber attacks. Conducting such tests in legacy systems is a challenge due to the high availability requirement. An approach using Timed Automata (TA) is proposed to overcome this challenge. This approach enables assessment of the effectiveness of an attack detection method based on process invariants. The approach has been demonstrated in a case study on one stage of a 6- stage operational water treatment plant. The model constructed captured the interactions among components in the selected stage. In addition, a set of attacks, attack detection mechanisms, and security specifications were also modeled using TA. These TA models were conjoined into a network and implemented in UPPAAL. The models so implemented were found effective in detecting the attacks considered. The study suggests the use of TA as an effective tool to model an ICS and study its attack detection mechanisms as a complement to doing so in a real plant-operational or under design.

2018-02-06
Sun, J., Sun, K., Li, Q..  2017.  CyberMoat: Camouflaging Critical Server Infrastructures with Large Scale Decoy Farms. 2017 IEEE Conference on Communications and Network Security (CNS). :1–9.

Traditional deception-based cyber defenses often undertake reactive strategies that utilize decoy systems or services for attack detection and information gathering. Unfortunately, the effectiveness of these defense mechanisms has been largely constrained by the low decoy fidelity, the poor scalability of decoy platform, and the static decoy configurations, which allow the attackers to identify and bypass the deployed decoys. In this paper, we develop a decoy-enhanced defense framework that can proactively protect critical servers against targeted remote attacks through deception. To achieve both high fidelity and good scalability, our system follows a hybrid architecture that separates lightweight yet versatile front-end proxies from back-end high-fidelity decoy servers. Moreover, our system can further invalidate the attackers' reconnaissance through dynamic proxy address shuffling. To guarantee service availability, we develop a transparent connection translation strategy to maintain existing connections during shuffling. Our evaluation on a prototype implementation demonstrates the effectiveness of our approach in defeating attacker reconnaissance and shows that it only introduces small performance overhead.

2018-02-02
Sprabery, R., Estrada, Z. J., Kalbarczyk, Z., Iyer, R., Bobba, R. B., Campbell, R..  2017.  Trustworthy Services Built on Event-Based Probing for Layered Defense. 2017 IEEE International Conference on Cloud Engineering (IC2E). :215–225.

Numerous event-based probing methods exist for cloud computing environments allowing a hypervisor to gain insight into guest activities. Such event-based probing has been shown to be useful for detecting attacks, system hangs through watchdogs, and for inserting exploit detectors before a system can be patched, among others. Here, we illustrate how to use such probing for trustworthy logging and highlight some of the challenges that existing event-based probing mechanisms do not address. Challenges include ensuring a probe inserted at given address is trustworthy despite the lack of attestation available for probes that have been inserted dynamically. We show how probes can be inserted to ensure proper logging of every invocation of a probed instruction. When combined with attested boot of the hypervisor and guest machines, we can ensure the output stream of monitored events is trustworthy. Using these techniques we build a trustworthy log of certain guest-system-call events. The log powers a cloud-tuned Intrusion Detection System (IDS). New event types are identified that must be added to existing probing systems to ensure attempts to circumvent probes within the guest appear in the log. We highlight the overhead penalties paid by guests to increase guarantees of log completeness when faced with attacks on the guest kernel. Promising results (less that 10% for guests) are shown when a guest relaxes the trade-off between log completeness and overhead. Our demonstrative IDS detects common attack scenarios with simple policies built using our guest behavior recording system.

2018-01-16
Rouf, Y., Shtern, M., Fokaefs, M., Litoiu, M..  2017.  A Hierarchical Architecture for Distributed Security Control of Large Scale Systems. 2017 IEEE/ACM 39th International Conference on Software Engineering Companion (ICSE-C). :118–120.

In the era of Big Data, software systems can be affected by its growing complexity, both with respect to functional and non-functional requirements. As more and more people use software applications over the web, the ability to recognize if some of this traffic is malicious or legitimate is a challenge. The traffic load of security controllers, as well as the complexity of security rules to detect attacks can grow to levels where current solutions may not suffice. In this work, we propose a hierarchical distributed architecture for security control in order to partition responsibility and workload among many security controllers. In addition, our architecture proposes a more simplified way of defining security rules to allow security to be enforced on an operational level, rather than a development level.

2018-01-10
Ahmed, C. M., Mathur, A. P..  2017.  Hardware Identification via Sensor Fingerprinting in a Cyber Physical System. 2017 IEEE International Conference on Software Quality, Reliability and Security Companion (QRS-C). :517–524.

A lot of research in security of cyber physical systems focus on threat models where an attacker can spoof sensor readings by compromising the communication channel. A little focus is given to attacks on physical components. In this paper a method to detect potential attacks on physical components in a Cyber Physical System (CPS) is proposed. Physical attacks are detected through a comparison of noise pattern from sensor measurements to a reference noise pattern. If an adversary has physically modified or replaced a sensor, the proposed method issues an alert indicating that a sensor is probably compromised or is defective. A reference noise pattern is established from the sensor data using a deterministic model. This pattern is referred to as a fingerprint of the corresponding sensor. The fingerprint so derived is used as a reference to identify measured data during the operation of a CPS. Extensive experimentation with ultrasonic level sensors in a realistic water treatment testbed point to the effectiveness of the proposed fingerprinting method in detecting physical attacks.

2017-12-28
Datta, A., Kar, S., Sinopoli, B., Weerakkody, S..  2016.  Accountability in cyber-physical systems. 2016 Science of Security for Cyber-Physical Systems Workshop (SOSCYPS). :1–3.

Our position is that a key component of securing cyber-physical systems (CPS) is to develop a theory of accountability that encompasses both control and computing systems. We envision that a unified theory of accountability in CPS can be built on a foundation of causal information flow analysis. This theory will support design and analysis of mechanisms at various stages of the accountability regime: attack detection, responsibility-assignment (e.g., attack identification or localization), and corrective measures (e.g., via resilient control) As an initial step in this direction, we summarize our results on attack detection in control systems. We use the Kullback-Liebler (KL) divergence as a causal information flow measure. We then recover, using information flow analyses, a set of existing results in the literature that were previously proved using different techniques. These results cover passive detection, stealthy attack characterization, and active detection. This research direction is related to recent work on accountability in computational systems [1], [2], [3], [4]. We envision that by casting accountability theories in computing and control systems in terms of causal information flow, we can provide a common foundation to develop a theory for CPS that compose elements from both domains.

Thuraisingham, B., Kantarcioglu, M., Hamlen, K., Khan, L., Finin, T., Joshi, A., Oates, T., Bertino, E..  2016.  A Data Driven Approach for the Science of Cyber Security: Challenges and Directions. 2016 IEEE 17th International Conference on Information Reuse and Integration (IRI). :1–10.

This paper describes a data driven approach to studying the science of cyber security (SoS). It argues that science is driven by data. It then describes issues and approaches towards the following three aspects: (i) Data Driven Science for Attack Detection and Mitigation, (ii) Foundations for Data Trustworthiness and Policy-based Sharing, and (iii) A Risk-based Approach to Security Metrics. We believe that the three aspects addressed in this paper will form the basis for studying the Science of Cyber Security.

2017-08-22
Junejo, Khurum Nazir, Goh, Jonathan.  2016.  Behaviour-Based Attack Detection and Classification in Cyber Physical Systems Using Machine Learning. Proceedings of the 2Nd ACM International Workshop on Cyber-Physical System Security. :34–43.

Cyber-physical systems (CPS) are often network integrated to enable remote management, monitoring, and reporting. Such integration has made them vulnerable to cyber attacks originating from an untrusted network (e.g., the internet). Once an attacker breaches the network security, he could corrupt operations of the system in question, which may in turn lead to catastrophes. Hence there is a critical need to detect intrusions into mission-critical CPS. Signature based detection may not work well for CPS, whose complexity may preclude any succinct signatures that we will need. Specification based detection requires accurate definitions of system behaviour that similarly can be hard to obtain, due to the CPS's complexity and dynamics, as well as inaccuracies and incompleteness of design documents or operation manuals. Formal models, to be tractable, are often oversimplified, in which case they will not support effective detection. In this paper, we study a behaviour-based machine learning (ML) approach for the intrusion detection. Whereas prior unsupervised ML methods have suffered from high missed detection or false-positive rates, we use a high-fidelity CPS testbed, which replicates all main physical and control components of a modern water treatment facility, to generate systematic training data for a supervised method. The method does not only detect the occurrence of a cyber attack at the physical process layer, but it also identifies the specific type of the attack. Its detection is fast and robust to noise. Furthermore, its adaptive system model can learn quickly to match dynamics of the CPS and its operating environment. It exhibits a low false positive (FP) rate, yet high precision and recall.

2017-02-14
J. Brynielsson, R. Sharma.  2015.  "Detectability of low-rate HTTP server DoS attacks using spectral analysis". 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM). :954-961.

Denial-of-Service (DoS) attacks pose a threat to any service provider on the internet. While traditional DoS flooding attacks require the attacker to control at least as much resources as the service provider in order to be effective, so-called low-rate DoS attacks can exploit weaknesses in careless design to effectively deny a service using minimal amounts of network traffic. This paper investigates one such weakness found within version 2.2 of the popular Apache HTTP Server software. The weakness concerns how the server handles the persistent connection feature in HTTP 1.1. An attack simulator exploiting this weakness has been developed and shown to be effective. The attack was then studied with spectral analysis for the purpose of examining how well the attack could be detected. Similar to other papers on spectral analysis of low-rate DoS attacks, the results show that disproportionate amounts of energy in the lower frequencies can be detected when the attack is present. However, by randomizing the attack pattern, an attacker can efficiently reduce this disproportion to a degree where it might be impossible to correctly identify an attack in a real world scenario.

2016-11-17
Phuong Cao, University of Illinois at Urbana-Champaign, Ravishankar Iyer, University of Illinois at Urbana-Champaign, Zbigniew Kalbarczyk, University of Illinois at Urbana-Champaign, Eric Badger, University of Illinois at Urbana-Champaign, Surya Bakshi, University of Illinois at Urbana-Champaign, Simon Kim, University of Illinois at Urbana-Champaign, Adam Slagell, University of Illinois at Urbana-Champaign, Alex Withers, University of Illinois at Urbana-Champaign.  2016.  Preemptive Intrusion Detection – Practical Experience and Detection Framework.

Using stolen or weak credentials to bypass authentication is one of the top 10 network threats, as shown in recent studies. Disguising as legitimate users, attackers use stealthy techniques such as rootkits and covert channels to gain persistent access to a target system. However, such attacks are often detected after the system misuse stage, i.e., the attackers have already executed attack payloads such as: i) stealing secrets, ii) tampering with system services, and ii) disrupting the availability of production services.

In this talk, we analyze a real-world credential stealing attack observed at the National Center for Supercomputing Applications. We show the disadvantages of traditional detection techniques such as signature-based and anomaly-based detection for such attacks. Our approach is a complement to existing detection techniques. We investigate the use of Probabilistic Graphical Model, specifically Factor Graphs, to integrate security logs from multiple sources for a more accurate detection. Finally, we propose a security testbed architecture to: i) simulate variants of known attacks that may happen in the future, ii) replay such attack variants in an isolated environment, and iii) collect and share security logs of such replays for the security research community.

Pesented at the Illinois Information Trust Institute Joint Trust and Security and Science of Security Seminar, May 3, 2016.

2014-09-17
Venkatakrishnan, Roopak, Vouk, Mladen A..  2014.  Diversity-based Detection of Security Anomalies. Proceedings of the 2014 Symposium and Bootcamp on the Science of Security. :29:1–29:2.

Detecting and preventing attacks before they compromise a system can be done using acceptance testing, redundancy based mechanisms, and using external consistency checking such external monitoring and watchdog processes. Diversity-based adjudication, is a step towards an oracle that uses knowable behavior of a healthy system. That approach, under best circumstances, is able to detect even zero-day attacks. In this approach we use functionally equivalent but in some way diverse components and we compare their output vectors and reactions for a given input vector. This paper discusses practical relevance of this approach in the context of recent web-service attacks.