Visible to the public Biblio

Filters: Keyword is RSA  [Clear All Filters]
2017-11-03
Ronczka, J..  2016.  Backchanneling Quantum Bit (Qubit) 'Shuffling': Quantum Bit (Qubit) 'Shuffling' as Added Security by Slipstreaming Q-Morse. 2016 3rd Asia-Pacific World Congress on Computer Science and Engineering (APWC on CSE). :106–115.

A fresh look at the way secure communications is currently being done has been undertaken as a consequence of the large hacking's that have taken place recently. A plausible option maybe a return to the future via Morse code using how a quantum bit (Qubit) reacts when entangled to suggest a cypher. This quantum cyphers uses multiple properties of unique entities that have many random radicals which makes hacking more difficult that traditional 'Rivest-Shamir-Adleman' (RSA), 'Digital Signature Algorithm' (DSA) or 'Elliptic Curve Digital Signature Algorithm' (ECDSA). Additional security is likely by Backchannelling (slipstreaming) Quantum Morse code (Q-Morse) keys composed of living and non-living entities. This means Blockchain ledger history (forwards-backwards) is audited during an active session. Verification keys are Backchannelling (slipstreaming) during the session (e.g. train driver must incrementally activate a switch otherwise the train stops) using predicted-expected sender-receiver properties as well as their past history of disconformities to random radicals encountered. In summary, Quantum Morse code (Q-Morse) plausibly is the enabler to additional security by Backchannelling (slipstreaming) during a communications session.

2017-09-26
Jebadurai, N. Immanuel, Gupta, Himanshu.  2016.  Automated Verification in Cryptography System. Proceedings of the Second International Conference on Information and Communication Technology for Competitive Strategies. :2:1–2:5.

Cryptographic protocols and algorithms are the strength of digital era in which we are living. Unluckily, the security of many confidential information and credentials has been compromised due to ignorance of required security services. As a result, various attacks have been introduced by talented attackers and many security issues like as financial loss, violations of personal privacy, and security threats to democracy. This research paper provides the secure design and architecture of cryptographic protocols and expedites the authentication of cryptographic system. Designing and developing a secure cryptographic system is like a game in which designer or developer tries to maintain the security while attacker tries to penetrate the security features to perform successful attack.

2017-03-20
Filipek, Jozef, Hudec, Ladislav.  2016.  Advances In Distributed Security For Mobile Ad Hoc Networks. Proceedings of the 17th International Conference on Computer Systems and Technologies 2016. :89–96.

Security in Mobile Ad Hoc networks is still ongoing research in the scientific community and it is difficult bring an overall security solution. In this paper we assess feasibility of distributed firewall solutions in the Mobile Ad Hoc Networks. Attention is also focused on different security solutions in the Ad Hoc networks. We propose a security architecture which secures network on the several layers and is the most secured solution out of analyzed materials. For this purpose we use distributed public key infrastructure, distributed firewall and intrusion detection system. Our architecture is using both symmetric and asymmetric cryptography and in this paper we present performance measurements and the security analysis of our solution.

2017-03-08
Mahajan, S., Katti, J., Walunj, A., Mahalunkar, K..  2015.  Designing a database encryption technique for database security solution with cache. 2015 IEEE International Advance Computing Conference (IACC). :357–360.

A database is a vast collection of data which helps us to collect, retrieve, organize and manage the data in an efficient and effective manner. Databases are critical assets. They store client details, financial information, personal files, company secrets and other data necessary for business. Today people are depending more on the corporate data for decision making, management of customer service and supply chain management etc. Any loss, corrupted data or unavailability of data may seriously affect its performance. The database security should provide protected access to the contents of a database and should preserve the integrity, availability, consistency, and quality of the data This paper describes the architecture based on placing the Elliptical curve cryptography module inside database management software (DBMS), just above the database cache. Using this method only selected part of the database can be encrypted instead of the whole database. This architecture allows us to achieve very strong data security using ECC and increase performance using cache.

2017-02-23
S. Goyal, M. Ramaiya, D. Dubey.  2015.  "Improved Detection of 1-2-4 LSB Steganography and RSA Cryptography in Color and Grayscale Images". 2015 International Conference on Computational Intelligence and Communication Networks (CICN). :1120-1124.

Steganography is the art of the hidden data in such a way that it detection of hidden knowledge prevents. As the necessity of security and privacy increases, the need of the hiding secret data is ongoing. In this paper proposed an enhanced detection of the 1-2-4 LSB steganography and RSA cryptography in Gray Scale and Color images. For color images, we apply 1-2-4 LSB on component of the RGB, then encrypt information applying RSA technique. For Gray Images, we use LSB to then encrypt information and also detect edges of gray image. In the experimental outcomes, calculate PSNR and MSE. We calculate peak signal noise ratio for quality and brightness. This method makes sure that the information has been encrypted before hiding it into an input image. If in any case the cipher text got revealed from the input image, the middle person other than receiver can't access the information as it is in encrypted form.

2015-05-06
Vollala, S., Varadhan, V.V., Geetha, K., Ramasubramanian, N..  2014.  Efficient modular multiplication algorithms for public key cryptography. Advance Computing Conference (IACC), 2014 IEEE International. :74-78.

The modular exponentiation is an important operation for cryptographic transformations in public key cryptosystems like the Rivest, Shamir and Adleman, the Difie and Hellman and the ElGamal schemes. computing ax mod n and axby mod n for very large x,y and n are fundamental to the efficiency of almost all pubic key cryptosystems and digital signature schemes. To achieve high level of security, the word length in the modular exponentiations should be significantly large. The performance of public key cryptography is primarily determined by the implementation efficiency of the modular multiplication and exponentiation. As the words are usually large, and in order to optimize the time taken by these operations, it is essential to minimize the number of modular multiplications. In this paper we are presenting efficient algorithms for computing ax mod n and axbymod n. In this work we propose four algorithms to evaluate modular exponentiation. Bit forwarding (BFW) algorithms to compute ax mod n, and to compute axby mod n two algorithms namely Substitute and reward (SRW), Store and forward(SFW) are proposed. All the proposed algorithms are efficient in terms of time and at the same time demands only minimal additional space to store the pre-computed values. These algorithms are suitable for devices with low computational power and limited storage.
 

2015-05-05
Stanisavljevic, Z., Stanisavljevic, J., Vuletic, P., Jovanovic, Z..  2014.  COALA - System for Visual Representation of Cryptography Algorithms. Learning Technologies, IEEE Transactions on. 7:178-190.

Educational software systems have an increasingly significant presence in engineering sciences. They aim to improve students' attitudes and knowledge acquisition typically through visual representation and simulation of complex algorithms and mechanisms or hardware systems that are often not available to the educational institutions. This paper presents a novel software system for CryptOgraphic ALgorithm visuAl representation (COALA), which was developed to support a Data Security course at the School of Electrical Engineering, University of Belgrade. The system allows users to follow the execution of several complex algorithms (DES, AES, RSA, and Diffie-Hellman) on real world examples in a step by step detailed view with the possibility of forward and backward navigation. Benefits of the COALA system for students are observed through the increase of the percentage of students who passed the exam and the average grade on the exams during one school year.