Visible to the public Biblio

Filters: Keyword is outage probability  [Clear All Filters]
2022-04-19
Zheng, Tong-Xing, Yang, Ziteng, Wang, Chao, Li, Zan, Yuan, Jinhong, Guan, Xiaohong.  2021.  Wireless Covert Communications Aided by Distributed Cooperative Jamming Over Slow Fading Channels. IEEE Transactions on Wireless Communications. 20:7026–7039.
In this paper, we study covert communications between a pair of legitimate transmitter-receiver against a watchful warden over slow fading channels. There coexist multiple friendly helper nodes who are willing to protect the covert communication from being detected by the warden. We propose an uncoordinated jammer selection scheme where those helpers whose instantaneous channel gains to the legitimate receiver fall below a pre-established selection threshold will be chosen as jammers radiating jamming signals to defeat the warden. By doing so, the detection accuracy of the warden is expected to be severely degraded while the desired covert communication is rarely affected. We then jointly design the optimal selection threshold and message transmission rate for maximizing covert throughput under the premise that the detection error of the warden exceeds a certain level. Numerical results are presented to validate our theoretical analyses. It is shown that the multi-jammer assisted covert communication outperforms the conventional single-jammer method in terms of covert throughput, and the maximal covert throughput improves significantly as the total number of helpers increases, which demonstrates the validity and superiority of our proposed scheme.
Conference Name: IEEE Transactions on Wireless Communications
2021-06-30
Ding, Xinyao, Wang, Yan.  2020.  False Data Injection Attack Detection Before Decoding in DF Cooperative Relay Network. 2020 Asia Conference on Computers and Communications (ACCC). :57—61.
False data injection (FDI) attacks could happen in decode-and-forward (DF) wireless cooperative relay networks. Although physical integrity check (PIC) can combat that by applying physical layer detection, the detector depends on the decoding results and low signal-to-noise ratio (SNR) further deteriorates the detecting results. In this paper, a physical layer detect-before-decode (DbD) method is proposed, which has low computational complexity with no sacrifice of false alarm and miss detection rates. One significant advantage of this method is the detector does not depend on the decoding results. In order to implement the proposed DbD method, a unified error sufficient statistic (UESS) containing the full information of FDI attacks is constructed. The proposed UESS simplifies the detector because it is applicable to all link conditions, which means there is no need to deal each link condition with a specialized sufficient statistic. Moreover, the source to destination outage probability (S2Dop) of the DF cooperative relay network utilizing the proposed DbD method is studied. Finally, numerical simulations verify the good performance of this DbD method.
2021-05-18
Morapitiya, Sumali S., Furqan Ali, Mohammad, Rajkumar, Samikkannu, Wijayasekara, Sanika K., Jayakody, Dushantha Nalin K., Weerasuriya, R.U..  2020.  A SLIPT-assisted Visible Light Communication Scheme. 2020 16th International Conference on Distributed Computing in Sensor Systems (DCOSS). :368–375.
Simultaneous Wireless Information and Power Transfer (SWIPT) technique is introduced in Radio Frequency (RF) communication to carry both information and power in same medium. In this approach, the energy can be harvested while decoding the information carries in an RF wave. Recently, the same concept applied in Visible Light Communication (VLC) namely Simultaneous Light Wave Information and Power Transfer (SLIPT), which is highly recommended in an indoor applications to overcome the problem facing in RF communication. Thus, SLIPT is introduced to transmit the power through a Light Emitting Diode (LED) luminaries. In this work, we compare both SWIPT and SLIPT technologies and realize SLIPT technology archives increased performance in terms of the amount of harvested energy, outage probability and error rate performance.
2021-04-08
Sarkar, M. Z. I., Ratnarajah, T..  2010.  Information-theoretic security in wireless multicasting. International Conference on Electrical Computer Engineering (ICECE 2010). :53–56.
In this paper, a wireless multicast scenario is considered in which the transmitter sends a common message to a group of client receivers through quasi-static Rayleigh fading channel in the presence of an eavesdropper. The communication between transmitter and each client receiver is said to be secured if the eavesdropper is unable to decode any information. On the basis of an information-theoretic formulation of the confidential communications between transmitter and a group of client receivers, we define the expected secrecy sum-mutual information in terms of secure outage probability and provide a complete characterization of maximum transmission rate at which the eavesdropper is unable to decode any information. Moreover, we find the probability of non-zero secrecy mutual information and present an analytical expression for ergodic secrecy multicast mutual information of the proposed model.
Bloch, M., Barros, J., Rodrigues, M. R. D., McLaughlin, S. W..  2008.  Wireless Information-Theoretic Security. IEEE Transactions on Information Theory. 54:2515–2534.
This paper considers the transmission of confidential data over wireless channels. Based on an information-theoretic formulation of the problem, in which two legitimates partners communicate over a quasi-static fading channel and an eavesdropper observes their transmissions through a second independent quasi-static fading channel, the important role of fading is characterized in terms of average secure communication rates and outage probability. Based on the insights from this analysis, a practical secure communication protocol is developed, which uses a four-step procedure to ensure wireless information-theoretic security: (i) common randomness via opportunistic transmission, (ii) message reconciliation, (iii) common key generation via privacy amplification, and (iv) message protection with a secret key. A reconciliation procedure based on multilevel coding and optimized low-density parity-check (LDPC) codes is introduced, which allows to achieve communication rates close to the fundamental security limits in several relevant instances. Finally, a set of metrics for assessing average secure key generation rates is established, and it is shown that the protocol is effective in secure key renewal-even in the presence of imperfect channel state information.