Biblio
Filters: Keyword is Programmable logic devices [Clear All Filters]
Information Encryption Security System Based on Chaos Algorithm. 2022 7th International Conference on Cyber Security and Information Engineering (ICCSIE). :128–131.
.
2022. Chaotic cryptography is structurally related to the concepts of confusion and diffusion in traditional cryptography theory. Chaotic cryptography is formed by the inevitable connection between chaos theory and pure cryptography. In order to solve the shortcomings of the existing research on information encryption security system, this paper discusses the realization technology of information security, the design principles of encryption system and three kinds of chaotic mapping systems, and discusses the selection of development tools and programmable devices. And the information encryption security system based on chaos algorithm is designed and discussed, and the randomness test of three groups of encrypted files is carried out by the proposed algorithm and the AES (Advanced Encryption Standard) algorithm. Experimental data show that the uniformity of P-value value of chaos algorithm is 0.714 on average. Therefore, it is verified that the information encryption security system using chaos algorithm has high security.
Configuration vulnerability in SNORT for Windows Operating Systems. 2022 IEEE International Conference on Cyber Security and Resilience (CSR). :82–89.
.
2022. Cyber-attacks against Industrial Control Systems (ICS) can lead to catastrophic events which can be prevented by the use of security measures such as the Intrusion Prevention Systems (IPS). In this work we experimentally demonstrate how to exploit the configuration vulnerabilities of SNORT one of the most adopted IPSs to significantly degrade the effectiveness of the IPS and consequently allowing successful cyber-attacks. We illustrate how to design a batch script able to retrieve and modify the configuration files of SNORT in order to disable its ability to detect and block Denial of Service (DoS) and ARP poisoning-based Man-In-The-Middle (MITM) attacks against a Programmable Logic Controller (PLC) in an ICS network. Experimental tests performed on a water distribution testbed show that, despite the presence of IPS, the DoS and ARP spoofed packets reach the destination causing respectively the disconnection of the PLC from the ICS network and the modification of packets payload.
Implementation of Cyber-Physical Systems with Modbus Communication for Security Studies. 2021 International Conference on Cyber Warfare and Security (ICCWS). :45—50.
.
2021. Modbus is a popular industrial communication protocol supported by most automation devices. Despite its popularity, it is not a secure protocol because when it was developed, security was not a concern due to closed environments of industrial control systems. With the convergence of information technology and operational technology in recent years, the security of industrial control systems has become a serious concern. Due to the high availability requirements, it is not practical or feasible to do security experimentation of production systems. We present an implementation of cyber-physical systems with Modbus/TCP communication for real-time security testing. The proposed architecture consists of a process simulator, an IEC 61131-3 compliant programmable logic controller, and a human-machine interface, all communicating via Modbus/TCP protocol. We use Simulink as the process simulator. It does not have built-in support for the Modbus protocol. A contribution of the proposed work is to extend the functionality of Simulink with a custom block to enable Modbus communication. We use two case studies to demonstrate the utility of the cyber-physical system architecture. We can model complex industrial processes with this architecture, can launch cyber-attacks, and develop protection mechanisms.
A Containerization-Based Backfit Approach for Industrial Control System Resiliency. 2021 IEEE Security and Privacy Workshops (SPW). :246–252.
.
2021. Many industrial control systems (ICS) are reliant upon programmable logic controllers (PLCs) for their operations. As ICS and PLCs are increasingly targeted by cyber-attacks, research facilitating the resiliency of their physical processes is imperative. This paper proposes an approach which leverages PLC containerization, input/output (I/O) multiplexing, and orchestration to respond to cyber incidents and ensure continuity of critical processes. A proofof-concept capability was developed and evaluated on live ICS testbed environments. The experimental results indicate the approach is viable for control applications with soft real-time requirements.
The Risk of Industrial Control System Programmable Logic Controller Default Configurations. 2020 International Computer Symposium (ICS). :443—447.
.
2020. In recent years, many devices in industrial control systems (ICS) equip Ethernet modules for more efficient communication and more fiexible deployment. Many communication protocols of those devices are based on internet protocol, which brings the above benefits but also makes it easier to access by anyone including attackers. In the case of using the factory default configurations, we wiiˆ demonstrate how to easily modify the programmable logic controllers (PLCs) program through the Integrated Development Environment provided by the manufacturer under the security protection of PLC not set properly and discuss the severity of it.