Qian, Kai, Dan Lo, Chia-Tien, Guo, Minzhe, Bhattacharya, Prabir, Yang, Li.
2012.
Mobile security labware with smart devices for cybersecurity education. IEEE 2nd Integrated STEM Education Conference. :1—3.
Smart mobile devices such as smartphones and tablets have become an integral part of our society. However, it also becomes a prime target for attackers with malicious intents. There have been a number of efforts on developing innovative courseware to promote cybersecurity education and to improve student learning; however, hands-on labs are not well developed for smart mobile devices and for mobile security topics. In this paper, we propose to design and develop a mobile security labware with smart mobile devices to promote the cybersecurity education. The integration of mobile computing technologies and smart devices into cybersecurity education will connect the education to leading-edge information technologies, motivate and engage students in security learning, fill in the gap with IT industry need, and help faculties build expertise on mobile computing. In addition, the hands-on experience with mobile app development will promote student learning and supply them with a better understanding of security knowledge not only in classical security domains but also in the emerging mobile security areas.
Laato, Samuli, Farooq, Ali, Tenhunen, Henri, Pitkamaki, Tinja, Hakkala, Antti, Airola, Antti.
2020.
AI in Cybersecurity Education- A Systematic Literature Review of Studies on Cybersecurity MOOCs. 2020 IEEE 20th International Conference on Advanced Learning Technologies (ICALT). :6—10.
Machine learning (ML) techniques are changing both the offensive and defensive aspects of cybersecurity. The implications are especially strong for privacy, as ML approaches provide unprecedented opportunities to make use of collected data. Thus, education on cybersecurity and AI is needed. To investigate how AI and cybersecurity should be taught together, we look at previous studies on cybersecurity MOOCs by conducting a systematic literature review. The initial search resulted in 72 items and after screening for only peer-reviewed publications on cybersecurity online courses, 15 studies remained. Three of the studies concerned multiple cybersecurity MOOCs whereas 12 focused on individual courses. The number of published work evaluating specific cybersecurity MOOCs was found to be small compared to all available cybersecurity MOOCs. Analysis of the studies revealed that cybersecurity education is, in almost all cases, organised based on the topic instead of used tools, making it difficult for learners to find focused information on AI applications in cybersecurity. Furthermore, there is a gab in academic literature on how AI applications in cybersecurity should be taught in online courses.
Chao, Henry, Stark, Benjamin, Samarah, Mohammad.
2019.
Analysis of Learning Modalities Towards Effective Undergraduate Cybersecurity Education Design. 2019 IEEE International Conference on Engineering, Technology and Education (TALE). :1—6.
Cybersecurity education is a critical component of today's computer science and IT curriculum. To provide for a highly effective cybersecurity education, we propose using machine-learning techniques to identify common learning modalities of cybersecurity students in order to optimize how cybersecurity core topics, threats, tools and techniques are taught. We test various hypothesis, e.g. that students of selected VARK learning styles will outperform their peers. The results indicate that for the class assignments in our study preference of read/write and kinesthetic modalities yielded the best results. This further indicates that specific learning instruments can be tailored for students based on their individual VARK learning styles.
Sabillon, Regner, Serra-Ruiz, Jordi, Cavaller, Victor, Cano, Jeimy.
2017.
A Comprehensive Cybersecurity Audit Model to Improve Cybersecurity Assurance: The CyberSecurity Audit Model (CSAM). 2017 International Conference on Information Systems and Computer Science (INCISCOS). :253—259.
Nowadays, private corporations and public institutions are dealing with constant and sophisticated cyberthreats and cyberattacks. As a general warning, organizations must build and develop a cybersecurity culture and awareness in order to defend against cybercriminals. Information Technology (IT) and Information Security (InfoSec) audits that were efficient in the past, are trying to converge into cybersecurity audits to address cyber threats, cyber risks and cyberattacks that evolve in an aggressive cyber landscape. However, the increase in number and complexity of cyberattacks and the convoluted cyberthreat landscape is challenging the running cybersecurity audit models and putting in evidence the critical need for a new cybersecurity audit model. This article reviews the best practices and methodologies of global leaders in the cybersecurity assurance and audit arena. By means of the analysis of the current approaches and theoretical background, their real scope, strengths and weaknesses are highlighted looking forward a most efficient and cohesive synthesis. As a resut, this article presents an original and comprehensive cybersecurity audit model as a proposal to be utilized for conducting cybersecurity audits in organizations and Nation States. The CyberSecurity Audit Model (CSAM) evaluates and validates audit, preventive, forensic and detective controls for all organizational functional areas. CSAM has been tested, implemented and validated along with the Cybersecurity Awareness TRAining Model (CATRAM) in a Canadian higher education institution. A research case study is being conducted to validate both models and the findings will be published accordingly.
Addae, Joyce, Radenkovic, Milena, Sun, Xu, Towey, Dave.
2016.
An extended perspective on cybersecurity education. 2016 IEEE International Conference on Teaching, Assessment, and Learning for Engineering (TALE). :367—369.
The current trend of ubiquitous device use whereby computing is becoming increasingly context-aware and personal, has created a growing concern for the protection of personal privacy. Privacy is an essential component of security, and there is a need to be able to secure personal computers and networks to minimize privacy depreciation within cyberspace. Human error has been recognized as playing a major role in security breaches: Hence technological solutions alone cannot adequately address the emerging security and privacy threats. Home users are particularly vulnerable to cybersecurity threats for a number of reasons, including a particularly important one that our research seeks to address: The lack of cybersecurity education. We argue that research seeking to address the human element of cybersecurity should not be limited only to the design of more usable technical security mechanisms, but should be extended and applied to offering appropriate training to all stakeholders within cyberspace.
Alnsour, Rawan, Hamdan, Basil.
2020.
Incorporating SCADA Cybersecurity in Undergraduate Engineering Technology Information Technology Education. 2020 Intermountain Engineering, Technology and Computing (IETC). :1—4.
The purpose of this paper is threefold. First, it makes the case for incorporating cybersecurity principles into undergraduate Engineering Technology Education and for incorporating Industrial Control Systems (ICS) principles into undergraduate Information Technology (IT)/Cybersecurity Education. Specifically, the paper highlights the knowledge/skill gap between engineers and IT/Cybersecurity professionals with respect to the cybersecurity of the ICS. Secondly, it identifies several areas where traditional IT systems and ICS intercept. This interception not only implies that ICS are susceptible to the same cyber threats as traditional IT/IS but also to threats that are unique to ICS. Subsequently, the paper identifies several areas where cybersecurity principles can be applied to ICS. By incorporating cybersecurity principles into Engineering Technology Education, the paper hopes to provide IT/Cybersecurity and Engineering Students with (a) the theoretical knowledge of the cybersecurity issues associated with administering and operating ICS and (b) the applied technical skills necessary to manage and mitigate the cyber risks against these systems. Overall, the paper holds the promise of contributing to the ongoing effort aimed at bridging the knowledge/skill gap with respect to securing ICS against cyber threats and attacks.
Raj, Rajendra K., Ekstrom, Joseph J., Impagliazzo, John, Lingafelt, Steven, Parrish, Allen, Reif, Harry, Sobiesk, Ed.
2017.
Perspectives on the future of cybersecurity education. 2017 IEEE Frontiers in Education Conference (FIE). :1—2.
As the worldwide demand for cybersecurity-trained professionals continues to grow, the need to understand and define what cybersecurity education really means at the college or university level. Given the relative infancy of these efforts to define undergraduate cybersecurity programs, the panelists will present different perspectives on how such programs can be structured. They will then engage with the audience to explore additional viewpoints on cybersecurity, and work toward a shared understanding of undergraduate cybersecurity programs.
Javidi, Giti, Sheybani, Ehsan.
2018.
K-12 Cybersecurity Education, Research, and Outreach. 2018 IEEE Frontiers in Education Conference (FIE). :1—5.
This research-to-practice work-in-progress addresses a new approach to cybersecurity education. The cyber security skills shortage is reaching prevalent proportions. The consensus in the STEM community is that the problem begins at k-12 schools with too few students interested in STEM subjects. One way to ensure a larger pipeline in cybersecurity is to train more high school teachers to not only teach cybersecurity in their schools or integrate cybersecurity concepts in their classrooms but also to promote IT security as an attractive career path. The proposed research will result in developing a unique and novel curriculum and scalable program in the area of cybersecurity and a set of powerful tools for a fun learning experience in cybersecurity education. In this project, we are focusing on the potential to advance research agendas in cybersecurity and train the future generation with cybersecurity skills and answer fundamental research questions that still exist in the blended learning methodologies for cybersecurity education and assessment. Leadership and entrepreneurship skills are also added to the mix to prepare students for real-world problems. Delivery methods, timing, format, pacing and outcomes alignment will all be assessed to provide a baseline for future research and additional synergy and integration with existing cybersecurity programs to expand or leverage for new cybersecurity and STEM educational research. This is a new model for cybersecurity education, leadership, and entrepreneurship and there is a possibility of a significant leap towards a more advanced cybersecurity educational methodology using this model. The project will also provide a prototype for innovation coupled with character-building and ethical leadership.