Biblio
Industrial control system (ICS) denotes a system consisting of actuators, control stations, and network that manages processes and functions in an industrial setting. The ICS community faces two major problems to keep pace with the broader trends of Industry 4.0: (1) a data rich, information poor (DRIP) syndrome, and (2) risk of financial and safety harms due to security breaches. In this paper, we propose a private cloud in the loop ICS architecture for real-time analytics that can bridge the gap between low data utilization and security hardening.
This paper presents a new micro-architectural vulnerability on the power management units of modern computers which creates an electromagnetic-based side-channel. The key observations that enable us to discover this sidechannel are: 1) in an effort to manage and minimize power consumption, modern microprocessors have a number of possible operating modes (power states) in which various sub-systems of the processor are powered down, 2) for some of the transitions between power states, the processor also changes the operating mode of the voltage regulator module (VRM) that supplies power to the affected sub-system, and 3) the electromagnetic (EM) emanations from the VRM are heavily dependent on its operating mode. As a result, these state-dependent EM emanations create a side-channel which can potentially reveal sensitive information about the current state of the processor and, more importantly, the programs currently being executed. To demonstrate the feasibility of exploiting this vulnerability, we create a covert channel by utilizing the changes in the processor's power states. We show how such a covert channel can be leveraged to exfiltrate sensitive information from a secured and completely isolated (air-gapped) laptop system by placing a compact, inexpensive receiver in proximity to that system. To further show the severity of this attack, we also demonstrate how such a covert channel can be established when the target and the receiver are several meters away from each other, including scenarios where the receiver and the target are separated by a wall. Compared to the state-of-the-art, the proposed covert channel has \textbackslashtextgreater3x higher bit-rate. Finally, to demonstrate that this new vulnerability is not limited to being used as a covert channel, we demonstrate how it can be used for attacks such as keystroke logging.
Fully securing networks from remote attacks is recognized by the IT industry as a critical and imposing challenge. Even highly secure systems remain vulnerable to attacks and advanced persistent threats. Air-gapped networks may be secure from remote attack. One-way flows are a novel approach to improving the security of telemetry for critical infrastructure, retaining some of the benefits of interconnectivity whilst maintaining a level of network security analogous to that of unconnected devices. Simple and inexpensive techniques can be used to provide this unidirectional security, removing the risk of remote attack from a range of potential targets and subnets. The application of one-way networks is demonstrated using IEEE compliant PMU data streams as a case study. Scalability is demonstrated using SDN techniques. Finally, these techniques are combined, demonstrating a node which can be secured from remote attack, within defined limitations.
Advanced persistent threats (APT) have increased in recent times as a result of the rise in interest by nation-states and sophisticated corporations to obtain high profile information. Typically, APT attacks are more challenging to detect since they leverage zero-day attacks and common benign tools. Furthermore, these attack campaigns are often prolonged to evade detection. We leverage an approach that uses a provenance graph to obtain execution traces of host nodes in order to detect anomalous behavior. By using the provenance graph, we extract features that are then used to train an online adaptive metric learning. Online metric learning is a deep learning method that learns a function to minimize the separation between similar classes and maximizes the separation between dis-similar instances. We compare our approach with baseline models and we show our method outperforms the baseline models by increasing detection accuracy on average by 11.3 % and increases True positive rate (TPR) on average by 18.3 %.
Advanced Persistent Threat (APT) is a stealthy, continuous and sophisticated method of network attacks, which can cause serious privacy leakage and millions of dollars losses. In this paper, we introduce a new game-theoretic framework of the interaction between a defender who uses limited Security Resources(SRs) to harden network and an attacker who adopts a multi-stage plan to attack the network. The game model is derived from Stackelberg games called a Multi-stage Maze Network Game (M2NG) in which the characteristics of APT are fully considered. The possible plans of the attacker are compactly represented using attack graphs(AGs), but the compact representation of the attacker's strategies presents a computational challenge and reaching the Nash Equilibrium(NE) is NP-hard. We present a method that first translates AGs into Markov Decision Process(MDP) and then achieves the optimal SRs allocation using the policy hill-climbing(PHC) algorithm. Finally, we present an empirical evaluation of the model and analyze the scalability and sensitivity of the algorithm. Simulation results exhibit that our proposed reinforcement learning-based SRs allocation is feasible and efficient.
Intrusion detection is one of the most prominent and challenging problem faced by cybersecurity organizations. Intrusion Detection System (IDS) plays a vital role in identifying network security threats. It protects the network for vulnerable source code, viruses, worms and unauthorized intruders for many intranet/internet applications. Despite many open source APIs and tools for intrusion detection, there are still many network security problems exist. These problems are handled through the proper pre-processing, normalization, feature selection and ranking on benchmark dataset attributes prior to the enforcement of self-learning-based classification algorithms. In this paper, we have performed a comprehensive comparative analysis of the benchmark datasets NSL-KDD and CIDDS-001. For getting optimal results, we have used the hybrid feature selection and ranking methods before applying self-learning (Machine / Deep Learning) classification algorithmic approaches such as SVM, Naïve Bayes, k-NN, Neural Networks, DNN and DAE. We have analyzed the performance of IDS through some prominent performance indicator metrics such as Accuracy, Precision, Recall and F1-Score. The experimental results show that k-NN, SVM, NN and DNN classifiers perform approx. 100% accuracy regarding performance evaluation metrics on the NSL-KDD dataset whereas k-NN and Naïve Bayes classifiers perform approx. 99% accuracy on the CIDDS-001 dataset.
It is a well-known fact that the use of Cloud Computing is becoming very common all over the world for data storage and analysis. But the proliferation of the threats in cloud is also their; threats like Information breaches, Data thrashing, Cloud account or Service traffic hijacking, Insecure APIs, Denial of Service, Malicious Insiders, Abuse of Cloud services, Insufficient due Diligence and Shared Technology Vulnerable. This paper tries to come up with the solution for the threat (Denial of Service) in cloud. We attempt to give our newly proposed model by the hybridization of Genetic algorithm and extension of Diffie Hellman algorithm and tries to make cloud transmission secure from upcoming intruders.
Web communication has become an indispensable characteristic of mobile apps. However, it is not clear what data the apps transmit, to whom, and what consequences such transmissions have. We analyzed the web communications found in mobile apps from the perspective of security. We first manually studied 160 Android apps to identify the commonly-used communication libraries, and to understand how they are used in these apps. We then developed a tool to statically identify web API URLs used in the apps, and restore the JSON data schemas including the type and value of each parameter. We extracted 9714 distinct web API URLs that were used in 3 376 apps. We found that developers often use the java.net package for network communication, however, third-party libraries like OkHttp are also used in many apps. We discovered that insecure HTTP connections are seven times more prevalent in closed-source than in open-source apps, and that embedded SQL and JavaScript code is used in web communication in more than 500 different apps. This finding is devastating; it leaves billions of users and API service providers vulnerable to attack.
Most modern cloud and web services are programmatically accessed through REST APIs. This paper discusses how an attacker might compromise a service by exploiting vulnerabilities in its REST API. We introduce four security rules that capture desirable properties of REST APIs and services. We then show how a stateful REST API fuzzer can be extended with active property checkers that automatically test and detect violations of these rules. We discuss how to implement such checkers in a modular and efficient way. Using these checkers, we found new bugs in several deployed production Azure and Office365 cloud services, and we discuss their security implications. All these bugs have been fixed.
Most anti-collusion audio fingerprinting schemes are aiming at finding colluders from the illegal redistributed audio copies. However, the loss caused by the redistributed versions is inevitable. In this letter, a novel fingerprinting scheme is proposed to eliminate the motivation of collusion attack. The audio signal is transformed to the frequency domain by the Fourier transform, and the coefficients in frequency domain are reversed in different degrees according to the fingerprint sequence. Different from other fingerprinting schemes, the coefficients of the host media are excessively modified by the proposed method in order to reduce the quality of the colluded version significantly, but the imperceptibility is well preserved. Experiments show that the colluded audio cannot be reused because of the poor quality. In addition, the proposed method can also resist other common attacks. Various kinds of copyright risks and losses caused by the illegal redistribution are effectively avoided, which is significant for protecting the copyright of audio.
In recent months, AI-synthesized face swapping videos referred to as deepfake have become an emerging problem. False video is becoming more and more difficult to distinguish, which brings a series of challenges to social security. Some scholars are devoted to studying how to improve the detection accuracy of deepfake video. At the same time, in order to conduct better research, some datasets for deepfake detection are made. Companies such as Google and Facebook have also spent huge sums of money to produce datasets for deepfake video detection, as well as holding deepfake detection competitions. The continuous advancement of video tampering technology and the improvement of video quality have also brought great challenges to deepfake detection. Some scholars have achieved certain results on existing datasets, while the results on some high-quality datasets are not as good as expected. In this paper, we propose new method with clustering-based embedding regularization for deepfake detection. We use open source algorithms to generate videos which can simulate distinctive artifacts in the deepfake videos. To improve the local smoothness of the representation space, we integrate a clustering-based embedding regularization term into the classification objective, so that the obtained model learns to resist adversarial examples. We evaluate our method on three latest deepfake datasets. Experimental results demonstrate the effectiveness of our method.
Modern critical infrastructures are increasingly turning into distributed, complex Cyber-Physical systems that need proactive protection and fast restoration to mitigate physical or cyber incidents or attacks. Addressing the need for early stage threat detection against physical intrusion, the paper presents two physical security sensors developed within the DEFENDER project for detecting the intrusion of drones and humans using video analytics. The continuous stream of media data obtained from the region of vulnerability and proximity is processed using Region based Fully Connected Neural Network deep-learning model. The novelty of the pro-posed system relies in the processing of multi-threaded media input streams for achieving real-time threat identification. The video analytics solution has been validated using NVIDIA GeForce GTX 1080 for drone detection and NVIDIA GeForce RTX 2070 Max-Q Design for detecting human intruders. The experimental test bed for the validation of the proposed system has been constructed to include environments and situations that are commonly faced by critical infrastructure operators such as the area of protection, tradeoff between angle of coverage against distance of coverage.
In the communication model of wired and wireless Adhoc networks, the most needed requirement is the integration of security. Mobile Adhoc networks are more aroused with the attacks compared to the wired environment. Subsequently, the characteristics of Mobile Adhoc networks are also influenced by the vulnerability. The pre-existing unfolding solutions are been obtained for infrastructure-less networks. However, these solutions are not always necessarily suitable for wireless networks. Further, the framework of wireless Adhoc networks has uncommon vulnerabilities and due to this behavior it is not protected by the same solutions, therefore the detection mechanism of intrusion is combinedly used to protect the Manets. Several intrusion detection techniques that have been developed for a fixed wired network cannot be applied in this new environment. Furthermore, The issue of intensity in terms of energy is of a major kind due to which the life of the working battery is very limited. The objective this research work is to detect the Anomalous behavior of nodes in Manet's and Experimental analysis is done by making use of Network Simulator-2 to do the comparative analysis for the existing algorithm, we enhanced the previous algorithm in order to improve the Energy efficiency and results shown the improvement of energy of battery life and Throughput is checked with respect to simulation of test case analysis. In this paper, the proposed algorithm is compared with the existing approach.