Biblio
Filters: Keyword is URLLC [Clear All Filters]
Implementation of Physical Layer Security into 5G NR Systems and E2E Latency Assessment. GLOBECOM 2022 - 2022 IEEE Global Communications Conference. :4044—4050.
.
2022. This paper assesses the impact on the performance that information-theoretic physical layer security (IT-PLS) introduces when integrated into a 5G New Radio (NR) system. For this, we implement a wiretap code for IT-PLS based on a modular coding scheme that uses a universal-hash function in its security layer. The main advantage of this approach lies in its flexible integration into the lower layers of the 5G NR protocol stack without affecting the communication's reliability. Specifically, we use IT-PLS to secure the transmission of downlink control information by integrating an extra pre-coding security layer as part of the physical downlink control channel (PDCCH) procedures, thus not requiring any change of the 3GPP 38 series standard. We conduct experiments using a real-time open-source 5G NR standalone implementation and use software-defined radios for over-the-air transmissions in a controlled laboratory environment. The overhead added by IT-PLS is determined in terms of the latency introduced into the system, which is measured at the physical layer for an end-to-end (E2E) connection between the gNB and the user equipment.
Security and Privacy. 2022 IEEE Future Networks World Forum (FNWF). :1–71.
.
2022. The digital transformation brought on by 5G is redefining current models of end-to-end (E2E) connectivity and service reliability to include security-by-design principles necessary to enable 5G to achieve its promise. 5G trustworthiness highlights the importance of embedding security capabilities from the very beginning while the 5G architecture is being defined and standardized. Security requirements need to overlay and permeate through the different layers of 5G systems (physical, network, and application) as well as different parts of an E2E 5G architecture within a risk-management framework that takes into account the evolving security-threats landscape. 5G presents a typical use-case of wireless communication and computer networking convergence, where 5G fundamental building blocks include components such as Software Defined Networks (SDN), Network Functions Virtualization (NFV) and the edge cloud. This convergence extends many of the security challenges and opportunities applicable to SDN/NFV and cloud to 5G networks. Thus, 5G security needs to consider additional security requirements (compared to previous generations) such as SDN controller security, hypervisor security, orchestrator security, cloud security, edge security, etc. At the same time, 5G networks offer security improvement opportunities that should be considered. Here, 5G architectural flexibility, programmability and complexity can be harnessed to improve resilience and reliability. The working group scope fundamentally addresses the following: •5G security considerations need to overlay and permeate through the different layers of the 5G systems (physical, network, and application) as well as different parts of an E2E 5G architecture including a risk management framework that takes into account the evolving security threats landscape. •5G exemplifies a use-case of heterogeneous access and computer networking convergence, which extends a unique set of security challenges and opportunities (e.g., related to SDN/NFV and edge cloud, etc.) to 5G networks. Similarly, 5G networks by design offer potential security benefits and opportunities through harnessing the architecture flexibility, programmability and complexity to improve its resilience and reliability. •The IEEE FNI security WG's roadmap framework follows a taxonomic structure, differentiating the 5G functional pillars and corresponding cybersecurity risks. As part of cross collaboration, the security working group will also look into the security issues associated with other roadmap working groups within the IEEE Future Network Initiative.
ISSN: 2770-7679
Local Constraint-Based Ordered Statistics Decoding for Short Block Codes. 2022 IEEE Information Theory Workshop (ITW). :107–112.
.
2022. In this paper, we propose a new ordered statistics decoding (OSD) for linear block codes, which is referred to as local constraint-based OSD (LC-OSD). Distinguished from the conventional OSD, which chooses the most reliable basis (MRB) for re-encoding, the LC-OSD chooses an extended MRB on which local constraints are naturally imposed. A list of candidate codewords is then generated by performing a serial list Viterbi algorithm (SLVA) over the trellis specified with the local constraints. To terminate early the SLVA for complexity reduction, we present a simple criterion which monitors the ratio of the bound on the likelihood of the unexplored candidate codewords to the sum of the hard-decision vector’s likelihood and the up-to-date optimal candidate’s likelihood. Simulation results show that the LC-OSD can have a much less number of test patterns than that of the conventional OSD but cause negligible performance loss. Comparisons with other complexity-reduced OSDs are also conducted, showing the advantages of the LC-OSD in terms of complexity.
5G QoS: Impact of Security Functions on Latency. NOMS 2020 - 2020 IEEE/IFIP Network Operations and Management Symposium. :1—9.
.
2020. Network slicing is considered a key enabler to 5th Generation (5G) communication networks. Mobile network operators may deploy network slices-complete logical networks customized for specific services expecting a certain Quality of Service (QoS). New business models like Network Slice-as-a-Service offerings to customers from vertical industries require negotiated Service Level Agreements (SLA), and network providers need automated enforcement mechanisms to assure QoS during instantiation and operation of slices. In this paper, we focus on ultra-reliable low-latency communication (URLLC). We propose a software architecture for security functions based on off-the-shelf hardware and open-source software and demonstrate, through a series of measurements, that the strict requirements of URLLC services can be achieved. As a real-world example, we perform our experiments using the intrusion prevention system (IPS) Snort to demonstrate the impact of security functions on latency. Our findings lead to the creation of a model predicting the system load that still meets the URLLC latency requirement. We fully disclose the artifacts presented in this paper including pcap traces, measurement tools, and plotting scripts at https://gallenmu.github.io/low-latency.
RETIS – Real-Time Sensitive Wireless Communication Solution for Industrial Control Applications. 2020 IEEE 5th International Symposium on Smart and Wireless Systems within the Conferences on Intelligent Data Acquisition and Advanced Computing Systems (IDAACS-SWS). :1—9.
.
2020. Ultra-Reliable Low Latency Communications (URLLC) has been always a vital component of many industrial applications. The paper proposes a new wireless URLLC solution called RETIS, which is suitable for factory automation and fast process control applications, where low latency, low jitter, and high data exchange rates are mandatory. In the paper, we describe the communication protocol as well as the hardware structure of the network nodes for implementing the required functionality. Many techniques enabling fast, reliable wireless transmissions are used - short Transmission Time Interval (TTI), TimeDivision Multiple Access (TDMA), MIMO, optional duplicated data transfer, Forward Error Correction (FEC), ACK mechanism. Preliminary tests show that reliable endto-end latency down to 350 μs and packet exchange rate up to 4 kHz can be reached (using quadruple MIMO and standard IEEE 802.15.4 PHY at 250 kbit/s).