Visible to the public Biblio

Found 1057 results

Filters: Keyword is machine learning  [Clear All Filters]
2021-09-21
Snow, Elijah, Alam, Mahbubul, Glandon, Alexander, Iftekharuddin, Khan.  2020.  End-to-End Multimodel Deep Learning for Malware Classification. 2020 International Joint Conference on Neural Networks (IJCNN). :1–7.
Malicious software (malware) is designed to cause unwanted or destructive effects on computers. Since modern society is dependent on computers to function, malware has the potential to do untold damage. Therefore, developing techniques to effectively combat malware is critical. With the rise in popularity of polymorphic malware, conventional anti-malware techniques fail to keep up with the rate of emergence of new malware. This poses a major challenge towards developing an efficient and robust malware detection technique. One approach to overcoming this challenge is to classify new malware among families of known malware. Several machine learning methods have been proposed for solving the malware classification problem. However, these techniques rely on hand-engineered features extracted from malware data which may not be effective for classifying new malware. Deep learning models have shown paramount success for solving various classification tasks such as image and text classification. Recent deep learning techniques are capable of extracting features directly from the input data. Consequently, this paper proposes an end-to-end deep learning framework for multimodels (henceforth, multimodel learning) to solve the challenging malware classification problem. The proposed model utilizes three different deep neural network architectures to jointly learn meaningful features from different attributes of the malware data. End-to-end learning optimizes all processing steps simultaneously, which improves model accuracy and generalizability. The performance of the model is tested with the widely used and publicly available Microsoft Malware Challenge Dataset and is compared with the state-of-the-art deep learning-based malware classification pipeline. Our results suggest that the proposed model achieves comparable performance to the state-of-the-art methods while offering faster training using end-to-end multimodel learning.
Brezinski, Kenneth, Ferens, Ken.  2020.  Complexity-Based Convolutional Neural Network for Malware Classification. 2020 International Conference on Computational Science and Computational Intelligence (CSCI). :1–9.
Malware classification remains at the forefront of ongoing research as the prevalence of metamorphic malware introduces new challenges to anti-virus vendors and firms alike. One approach to malware classification is Static Analysis - a form of analysis which does not require malware to be executed before classification can be performed. For this reason, a lightweight classifier based on the features of a malware binary is preferred, with relatively low computational overhead. In this work a modified convolutional neural network (CNN) architecture was deployed which integrated a complexity-based evaluation based on box-counting. This was implemented by setting up max-pooling layers in parallel, and then extracting the fractal dimension using a polyscalar relationship based on the resolution of the measurement scale and the number of elements of a malware image covered in the measurement under consideration. To test the robustness and efficacy of our approach we trained and tested on over 9300 malware binaries from 25 unique malware families. This work was compared to other award-winning image recognition models, and results showed categorical accuracy in excess of 96.54%.
Chamotra, Saurabh, Barbhuiya, Ferdous Ahmed.  2020.  Analysis and Modelling of Multi-Stage Attacks. 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :1268–1275.
Honeypots are the information system resources used for capturing and analysis of cyber attacks. Highinteraction Honeypots are capable of capturing attacks in their totality and hence are an ideal choice for capturing multi-stage cyber attacks. The term multi-stage attack is an abstraction that refers to a class of cyber attacks consisting of multiple attack stages. These attack stages are executed either by malicious codes, scripts or sometimes even inbuilt system tools. In the work presented in this paper we have proposed a framework for capturing, analysis and modelling of multi-stage cyber attacks. The objective of our work is to devise an effective mechanism for the classification of multi-stage cyber attacks. The proposed framework comprise of a network of high interaction honeypots augmented with an attack analysis engine. The analysis engine performs rule based labeling of captured honeypot data. The labeling engine labels the attack data as generic events. These events are further fused to generate attack graphs. The hence generated attack graphs are used to characterize and later classify the multi-stage cyber attacks.
Yan, Fan, Liu, Jia, Gu, Liang, Chen, Zelong.  2020.  A Semi-Supervised Learning Scheme to Detect Unknown DGA Domain Names Based on Graph Analysis. 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :1578–1583.
A large amount of malware families use the domain generation algorithms (DGA) to randomly generate a large amount of domain names. It is a good way to bypass conventional blacklists of domain names, because we cannot predict which of the randomly generated domain names are selected for command and control (C&C) communications. An effective approach for detecting known DGA families is to investigate the malware with reverse engineering to find the adopted generation algorithms. As reverse engineering cannot handle the variants of DGA families, some researches leverage supervised learning to find new variants. However, the explainability of supervised learning is low and cannot find previously unseen DGA families. In this paper, we propose a graph-based semi-supervised learning scheme to track the evolution of known DGA families and find previously unseen DGA families. With a domain relation graph, we can clearly figure out how new variants relate to known DGA domain names, which induces better explainability. We deployed the proposed scheme on real network scenarios and show that the proposed scheme can not only comprehensively and precisely find known DGA families, but also can find new DGA families which have not seen before.
Ramadhan, Beno, Purwanto, Yudha, Ruriawan, Muhammad Faris.  2020.  Forensic Malware Identification Using Naive Bayes Method. 2020 International Conference on Information Technology Systems and Innovation (ICITSI). :1–7.
Malware is a kind of software that, if installed on a malware victim's device, might carry malicious actions. The malicious actions might be data theft, system failure, or denial of service. Malware analysis is a process to identify whether a piece of software is a malware or not. However, with the advancement of malware technologies, there are several evasion techniques that could be implemented by malware developers to prevent analysis, such as polymorphic and oligomorphic. Therefore, this research proposes an automatic malware detection system. In the system, the malware characteristics data were obtained through both static and dynamic analysis processes. Data from the analysis process were classified using Naive Bayes algorithm to identify whether the software is a malware or not. The process of identifying malware and benign files using the Naive Bayes machine learning method has an accuracy value of 93 percent for the detection process using static characteristics and 85 percent for detection through dynamic characteristics.
Patil, Rajvardhan, Deng, Wei.  2020.  Malware Analysis using Machine Learning and Deep Learning techniques. 2020 SoutheastCon. 2:1–7.
In this era, where the volume and diversity of malware is rising exponentially, new techniques need to be employed for faster and accurate identification of the malwares. Manual heuristic inspection of malware analysis are neither effective in detecting new malware, nor efficient as they fail to keep up with the high spreading rate of malware. Machine learning approaches have therefore gained momentum. They have been used to automate static and dynamic analysis investigation where malware having similar behavior are clustered together, and based on the proximity unknown malwares get classified to their respective families. Although many such research efforts have been conducted where data-mining and machine-learning techniques have been applied, in this paper we show how the accuracy can further be improved using deep learning networks. As deep learning offers superior classification by constructing neural networks with a higher number of potentially diverse layers it leads to improvement in automatic detection and classification of the malware variants.In this research, we present a framework which extracts various feature-sets such as system calls, operational codes, sections, and byte codes from the malware files. In the experimental and result section, we compare the accuracy obtained from each of these features and demonstrate that feature vector for system calls yields the highest accuracy. The paper concludes by showing how deep learning approach performs better than the traditional shallow machine learning approaches.
Walker, Aaron, Sengupta, Shamik.  2020.  Malware Family Fingerprinting Through Behavioral Analysis. 2020 IEEE International Conference on Intelligence and Security Informatics (ISI). :1–5.
Signature-based malware detection is not always effective at detecting polymorphic variants of known malware. Malware signatures are devised to counter known threats, which also limits efficacy against new forms of malware. However, existing signatures do present the ability to classify malware based upon known malicious behavior which occurs on a victim computer. In this paper we present a method of classifying malware by family type through behavioral analysis, where the frequency of system function calls is used to fingerprint the actions of specific malware families. This in turn allows us to demonstrate a machine learning classifier which is capable of distinguishing malware by family affiliation with high accuracy.
Brzezinski Meyer, Maria Laura, Labit, Yann.  2020.  Combining Machine Learning and Behavior Analysis Techniques for Network Security. 2020 International Conference on Information Networking (ICOIN). :580–583.
Network traffic attacks are increasingly common and varied, this is a big problem especially when the target network is centralized. The creation of IDS (Intrusion Detection Systems) capable of detecting various types of attacks is necessary. Machine learning algorithms are widely used in the classification of data, bringing a good result in the area of computer networks. In addition, the analysis of entropy and distance between data sets are also very effective in detecting anomalies. However, each technique has its limitations, so this work aims to study their combination in order to improve their performance and create a new intrusion detection system capable of well detect some of the most common attacks. Reliability indices will be used as metrics to the combination decision and they will be updated in each new dataset according to the decision made earlier.
Wu, Qiang, Zhang, Jiliang.  2020.  CT PUF: Configurable Tristate PUF against Machine Learning Attacks. 2020 IEEE International Symposium on Circuits and Systems (ISCAS). :1–5.
Strong physical unclonable function (PUF) is a promising lightweight hardware security primitive for device authentication. However, it is vulnerable to machine learning attacks. This paper demonstrates that even a recently proposed dual-mode PUF is still can be broken. In order to improve the security, this paper proposes a highly flexible machine learning resistant configurable tristate (CT) PUF which utilizes the response generated in the working state of Arbiter PUF to XOR the challenge input and response output of other two working states (ring oscillator (RO) PUF and bitable ring (BR) PUF). The proposed CT PUF is implemented on Xilinx Artix-7 FPGAs and the experiment results show that the modeling accuracy of logistic regression and artificial neural network is reduced to the mid-50%.
Zhe, Wang, Wei, Cheng, Chunlin, Li.  2020.  DoS attack detection model of smart grid based on machine learning method. 2020 IEEE International Conference on Power, Intelligent Computing and Systems (ICPICS). :735–738.
In recent years, smart grid has gradually become the common development trend of the world's power industry, and its security issues are increasingly valued by researchers. Smart grids have applied technologies such as physical control, data encryption, and authentication to improve their security, but there is still a lack of timely and effective detection methods to prevent the grid from being threatened by malicious intrusions. Aiming at this problem, a model based on machine learning to detect smart grid DoS attacks has been proposed. The model first collects network data, secondly selects features and uses PCA for data dimensionality reduction, and finally uses SVM algorithm for abnormality detection. By testing the SVM, Decision Tree and Naive Bayesian Network classification algorithms on the KDD99 dataset, it is found that the SVM model works best.
Swarna Sugi, S. Shinly, Ratna, S. Raja.  2020.  Investigation of Machine Learning Techniques in Intrusion Detection System for IoT Network. 2020 3rd International Conference on Intelligent Sustainable Systems (ICISS). :1164–1167.
Internet of Things (IoT) combines the internet and physical objects to transfer information among the objects. In the emerging IoT networks, providing security is the major issue. IoT device is exposed to various security issues due to its low computational efficiency. In recent years, the Intrusion Detection System valuable tool deployed to secure the information in the network. This article exposes the Intrusion Detection System (IDS) based on deep learning and machine learning to overcome the security attacks in IoT networks. Long Short-Term Memory (LSTM) and K-Nearest Neighbor (KNN) are used in the attack detection model and performances of those algorithms are compared with each other based on detection time, kappa statistic, geometric mean, and sensitivity. The effectiveness of the developed IDS is evaluated by using Bot-IoT datasets.
Sathya, K, Premalatha, J, Suwathika, S.  2020.  Reinforcing Cyber World Security with Deep Learning Approaches. 2020 International Conference on Communication and Signal Processing (ICCSP). :0766–0769.
In the past decade, the Machine Learning (ML) and Deep learning (DL) has produced much research interest in the society and attracted them. Now-a-days, the Internet and social life make a lead in most of their life but it has serious social threats. It is a challenging thing to protect the sensitive information, data network and the computers which are in unauthorized cyber-attacks. For protecting the data's we need the cyber security. For these problems, the recent technologies of Deep learning and Machine Learning are integrated with the cyber-attacks to provide the solution for the problems. This paper gives a synopsis of utilizing deep learning to enhance the security of cyber world and various challenges in integrating deep learning into cyber security are analyzed.
Dalal, Kushal Rashmikant.  2020.  Analysing the Role of Supervised and Unsupervised Machine Learning in IoT. 2020 International Conference on Electronics and Sustainable Communication Systems (ICESC). :75–79.
To harness the value of data generated from IoT, there is a crucial requirement of new mechanisms. Machine learning (ML) is among the most suitable paradigms of computation which embeds strong intelligence within IoT devices. Various ML techniques are being widely utilised for improving network security in IoT. These techniques include reinforcement learning, semi-supervised learning, supervised learning, and unsupervised learning. This report aims to critically analyse the role played by supervised and unsupervised ML for the enhancement of IoT security.
Zhao, Quanling, Sun, Jiawei, Ren, Hongjia, Sun, Guodong.  2020.  Machine-Learning Based TCP Security Action Prediction. 2020 5th International Conference on Mechanical, Control and Computer Engineering (ICMCCE). :1329–1333.
With the continuous growth of Internet technology and the increasingly broadening applications of The Internet, network security incidents as well as cyber-attacks are also showing a growing trend. Consequently, computer network security is becoming increasingly important. TCP firewall is a computer network security system, and it allows or denies the transmission of data according to specific rules for providing security for the computer network. Traditional firewalls rely on network administrators to set security rules for them, and network administrators sometimes need to choose to allow and deny packets to keep computer networks secure. However, due to the huge amount of data on the Internet, network administrators have a huge task. Therefore, it is particularly important to solve this problem by using the machine learning method of computer technology. This study aims to predict TCP security action based on the TCP transmission characteristics dataset provided by UCI machine learning repository by implementing machine learning models such as neural network, support vector machine (SVM), AdaBoost, and Logistic regression. Processes including evaluating various models and interpretability analysis. By utilizing the idea of ensemble-learning, the final result has an accuracy score of over 98%.
2021-09-16
Al-Jody, Taha, Holmes, Violeta, Antoniades, Alexandros, Kazkouzeh, Yazan.  2020.  Bearicade: Secure Access Gateway to High Performance Computing Systems. 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :1420–1427.
Cyber security is becoming a vital part of many information technologies and computing systems. Increasingly, High-Performance Computing systems are used in scientific research, academia and industry. High-Performance Computing applications are specifically designed to take advantage of the parallel nature of High-Performance Computing systems. Current research into High-Performance Computing systems focuses on the improvements in software development, parallel algorithms and computer systems architecture. However, there are no significant efforts in developing common High-Performance Computing security standards. Security of the High-Performance Computing resources is often an add-on to existing varied institutional policies that do not take into account additional requirements for High-Performance Computing security. Also, the users' terminals or portals used to access the High-Performance Computing resources are frequently insecure or they are being used in unprotected networks. In this paper we present Bearicade - a Data-driven Security Orchestration Automation and Response system. Bearicade collects data from the HPC systems and its users, enabling the use of Machine Learning based solutions to address current security issues in the High-Performance Computing systems. The system security is achieved through monitoring, analysis and interpretation of data such as users' activity, server requests, devices used and geographic locations. Any anomaly in users' behaviour is detected using machine learning algorithms, and would be visible to system administrators to help mediate the threats. The system was tested on a university campus grid system by administrators and users. Two case studies, Anomaly detection of user behaviour and Classification of Malicious Linux Terminal Command, have demonstrated machine learning approaches in identifying potential security threats. Bearicade's data was used in the experiments. The results demonstrated that detailed information is provided to the HPC administrators to detect possible security attacks and to act promptly.
Yoon, JinYi, Lee, HyungJune.  2020.  PUFGAN: Embracing a Self-Adversarial Agent for Building a Defensible Edge Security Architecture. IEEE INFOCOM 2020 - IEEE Conference on Computer Communications. :904–913.
In the era of edge computing and Artificial Intelligence (AI), securing billions of edge devices within a network against intelligent attacks is crucial. We propose PUFGAN, an innovative machine learning attack-proof security architecture, by embedding a self-adversarial agent within a device fingerprint- based security primitive, public PUF (PPUF) known for its strong fingerprint-driven cryptography. The self-adversarial agent is implemented using Generative Adversarial Networks (GANs). The agent attempts to self-attack the system based on two GAN variants, vanilla GAN and conditional GAN. By turning the attacking quality through generating realistic secret keys used in the PPUF primitive into system vulnerability, the security architecture is able to monitor its internal vulnerability. If the vulnerability level reaches at a specific value, PUFGAN allows the system to restructure its underlying security primitive via feedback to the PPUF hardware, maintaining security entropy at as high a level as possible. We evaluated PUFGAN on three different machine environments: Google Colab, a desktop PC, and a Raspberry Pi 2, using a real-world PPUF dataset. Extensive experiments demonstrated that even a strong device fingerprint security primitive can become vulnerable, necessitating active restructuring of the current primitive, making the system resilient against extreme attacking environments.
Almohri, Hussain M. J., Watson, Layne T., Evans, David.  2020.  An Attack-Resilient Architecture for the Internet of Things. IEEE Transactions on Information Forensics and Security. 15:3940–3954.
With current IoT architectures, once a single device in a network is compromised, it can be used to disrupt the behavior of other devices on the same network. Even though system administrators can secure critical devices in the network using best practices and state-of-the-art technology, a single vulnerable device can undermine the security of the entire network. The goal of this work is to limit the ability of an attacker to exploit a vulnerable device on an IoT network and fabricate deceitful messages to co-opt other devices. The approach is to limit attackers by using device proxies that are used to retransmit and control network communications. We present an architecture that prevents deceitful messages generated by compromised devices from affecting the rest of the network. The design assumes a centralized and trustworthy machine that can observe the behavior of all devices on the network. The central machine collects application layer data, as opposed to low-level network traffic, from each IoT device. The collected data is used to train models that capture the normal behavior of each individual IoT device. The normal behavioral data is then used to monitor the IoT devices and detect anomalous behavior. This paper reports on our experiments using both a binary classifier and a density-based clustering algorithm to model benign IoT device behavior with a realistic test-bed, designed to capture normal behavior in an IoT-monitored environment. Results from the IoT testbed show that both the classifier and the clustering algorithms are promising and encourage the use of application-level data for detecting compromised IoT devices.
Conference Name: IEEE Transactions on Information Forensics and Security
2021-09-08
Bhati, Akhilesh, Bouras, Abdelaziz, Ahmed Qidwai, Uvais, Belhi, Abdelhak.  2020.  Deep Learning Based Identification of DDoS Attacks in Industrial Application. 2020 Fourth World Conference on Smart Trends in Systems, Security and Sustainability (WorldS4). :190–196.
Denial of Service (DoS) attacks are very common type of computer attack in the world of internet today. Automatically detecting such type of DDoS attack packets & dropping them before passing through is the best prevention method. Conventional solution only monitors and provide the feedforward solution instead of the feedback machine-based learning. A Design of Deep neural network has been suggested in this paper. In this approach, high level features are extracted for representation and inference of the dataset. Experiment has been conducted based on the ISCX dataset for year 2017, 2018 and CICDDoS2019 and program has been developed in Matlab R17b using Wireshark.
Ali, Jehad, Roh, Byeong-hee, Lee, Byungkyu, Oh, Jimyung, Adil, Muhammad.  2020.  A Machine Learning Framework for Prevention of Software-Defined Networking Controller from DDoS Attacks and Dimensionality Reduction of Big Data. 2020 International Conference on Information and Communication Technology Convergence (ICTC). :515–519.
The controller is an indispensable entity in software-defined networking (SDN), as it maintains a global view of the underlying network. However, if the controller fails to respond to the network due to a distributed denial of service (DDoS) attacks. Then, the attacker takes charge of the whole network via launching a spoof controller and can also modify the flow tables. Hence, faster, and accurate detection of DDoS attacks against the controller will make the SDN reliable and secure. Moreover, the Internet traffic is drastically increasing due to unprecedented growth of connected devices. Consequently, the processing of large number of requests cause a performance bottleneck regarding SDN controller. In this paper, we propose a hierarchical control plane SDN architecture for multi-domain communication that uses a statistical method called principal component analysis (PCA) to reduce the dimensionality of the big data traffic and the support vector machine (SVM) classifier is employed to detect a DDoS attack. SVM has high accuracy and less false positive rate while the PCA filters attribute drastically. Consequently, the performance of classification and accuracy is improved while the false positive rate is reduced.
2021-09-07
Manikumar, D.V.V.S., Maheswari, B Uma.  2020.  Blockchain Based DDoS Mitigation Using Machine Learning Techniques. 2020 Second International Conference on Inventive Research in Computing Applications (ICIRCA). :794–800.
DDoS attacks are the most commonly performed cyber-attacks with a motive to suspend the target services and making them unavailable to users. A recent attack on Github, explains that the traffic was traced back to ``over a thousand different autonomous systems across millions of unique endpoints''. Generally, there are various types of DDoS attacks and each attack uses a different protocol and attacker uses a botnet to execute such attacks. Hence, it will be very difficult for organizations to deal with these attacks and going for third parties to secure themselves from DDoS attacks. In order to eliminate the third parties. Our proposed system uses machine learning algorithms to identify the incoming packet is malicious or not and use Blockchain technology to store the Blacklist. The key benefit of Blockchain is that blacklisted IP addresses are effectively stored, and usage of such infrastructure provides an advantage of extra security mechanism over existing DDoS mitigation systems. This paper has evaluated three different algorithms, such as the KNN Classifier, the Decision Tree Classifier, Random Forest algorithm to find out the better classifying algorithm. Tree Based Classifier technique used for Feature Selection to boost the computational time. Out of the three algorithms, Random Forest provides an accuracy about 95 % in real-time traffic analysis.
Huang, Weiqing, Peng, Xiao, Shi, Zhixin, Ma, Yuru.  2020.  Adversarial Attack against LSTM-Based DDoS Intrusion Detection System. 2020 IEEE 32nd International Conference on Tools with Artificial Intelligence (ICTAI). :686–693.
Nowadays, machine learning is a popular method for DDoS detection. However, machine learning algorithms are very vulnerable under the attacks of adversarial samples. Up to now, multiple methods of generating adversarial samples have been proposed. However, they cannot be applied to LSTM-based DDoS detection directly because of the discrete property and the utility requirement of its input samples. In this paper, we propose two methods to generate DDoS adversarial samples, named Genetic Attack (GA) and Probability Weighted Packet Saliency Attack (PWPSA) respectively. Both methods modify original input sample by inserting or replacing partial packets. In GA, we evolve a set of modified samples with genetic algorithm and find the evasive variant from it. In PWPSA, we modify original sample iteratively and use the position saliency as well as the packet score to determine insertion or replacement order at each step. Experimental results on CICIDS2017 dataset show that both methods can bypass DDoS detectors with high success rate.
Sudugala, A.U, Chanuka, W.H, Eshan, A.M.N, Bandara, U.C.S, Abeywardena, K.Y.  2020.  WANHEDA: A Machine Learning Based DDoS Detection System. 2020 2nd International Conference on Advancements in Computing (ICAC). 1:380–385.
In today's world computer communication is used almost everywhere and majority of them are connected to the world's largest network, the Internet. There is danger in using internet due to numerous cyber-attacks which are designed to attack Confidentiality, Integrity and Availability of systems connected to the internet. One of the most prominent threats to computer networking is Distributed Denial of Service (DDoS) Attack. They are designed to attack availability of the systems. Many users and ISPs are targeted and affected regularly by these attacks. Even though new protection technologies are continuously proposed, this immense threat continues to grow rapidly. Most of the DDoS attacks are undetectable because they act as legitimate traffic. This situation can be partially overcome by using Intrusion Detection Systems (IDSs). There are advanced attacks where there is no proper documented way to detect. In this paper authors present a Machine Learning (ML) based DDoS detection mechanism with improved accuracy and low false positive rates. The proposed approach gives inductions based on signatures previously extracted from samples of network traffic. Authors perform the experiments using four distinct benchmark datasets, four machine learning algorithms to address four of the most harmful DDoS attack vectors. Authors achieved maximum accuracy and compared the results with other applicable machine learning algorithms.
Atasever, Süreyya, Öz\c celık, İlker, Sa\u giro\u glu, \c Seref.  2020.  An Overview of Machine Learning Based Approaches in DDoS Detection. 2020 28th Signal Processing and Communications Applications Conference (SIU). :1–4.
Many detection approaches have been proposed to address growing threat of Distributed Denial of Service (DDoS) attacks on the Internet. The attack detection is the initial step in most of the mitigation systems. This study examined the methods used to detect DDoS attacks with the focus on learning based approaches. These approaches were compared based on their efficiency, operating load and scalability. Finally, it is discussed in details.
Priya, S.Shanmuga, Sivaram, M., Yuvaraj, D., Jayanthiladevi, A..  2020.  Machine Learning Based DDOS Detection. 2020 International Conference on Emerging Smart Computing and Informatics (ESCI). :234–237.
One of a high relentless attack is the crucial distributed DoS attacks. The types and tools for this attacks increases day-to-day as per the technology increases. So the methodology for detection of DDoS should be advanced. For this purpose we created an automated DDoS detector using ML which can run on any commodity hardware. The results are 98.5 % accurate. We use three classification algorithms KNN, RF and NB to classify DDoS packets from normal packets using two features, delta time and packet size. This detector mostly can detect all types of DDoS such as ICMP flood, TCP flood, UDP flood etc. In the older systems they detect only some types of DDoS attacks and some systems may require a large number of features to detect DDoS. Some systems may work only with certain protocols only. But our proposed model overcome these drawbacks by detecting the DDoS of any type without a need of specific protocol that uses less amount of features.
Vamsi, G Krishna, Rasool, Akhtar, Hajela, Gaurav.  2020.  Chatbot: A Deep Neural Network Based Human to Machine Conversation Model. 2020 11th International Conference on Computing, Communication and Networking Technologies (ICCCNT). :1–7.
A conversational agent (chatbot) is computer software capable of communicating with humans using natural language processing. The crucial part of building any chatbot is the development of conversation. Despite many developments in Natural Language Processing (NLP) and Artificial Intelligence (AI), creating a good chatbot model remains a significant challenge in this field even today. A conversational bot can be used for countless errands. In general, they need to understand the user's intent and deliver appropriate replies. This is a software program of a conversational interface that allows a user to converse in the same manner one would address a human. Hence, these are used in almost every customer communication platform, like social networks. At present, there are two basic models used in developing a chatbot. Generative based models and Retrieval based models. The recent advancements in deep learning and artificial intelligence, such as the end-to-end trainable neural networks have rapidly replaced earlier methods based on hand-written instructions and patterns or statistical methods. This paper proposes a new method of creating a chatbot using a deep neural learning method. In this method, a neural network with multiple layers is built to learn and process the data.