Ali, Ahtasham, Al-Perumal, Sundresan.
2021.
Source Code Analysis for Mobile Applications for Privacy Leaks. 2021 IEEE Madras Section Conference (MASCON). :1—6.
Intelligent gadgets for example smartphones, tablet phones, and personal digital assistants play an increasingly important part in our lives and have become indispensable in our everyday routines. As a result, the market for mobile apps tends to grow at a rapid rate, and mobile app utilization has long eclipsed that of desktop software. The applications based on these smartphones are becoming vulnerable due to the use of open-source operating systems in these smart devices. These applications are vulnerable to smartphones because of memory leaks; they can steal personal data, hack our smartphones, and monitor our private activity, giving anyone significant financial loss. Because of these issues, smartphone security plays a vital role in our daily lives. The Play Store contains unrated applications which any unprofessional developer can develop, and these applications do not pass through the rigorous process of testing and analysis of code leaks. The existing developed system does not include a stringent procedure to examine and investigate source code to detect such vulnerabilities among mobile applications. This paper presented a dynamic analysis-based robust system for Source Code Analysis of Mobile Applications for Privacy Leaks using a machine learning algorithm. Furthermore, our framework is called Source Code Analysis of Mobile Applications (SCA-MA), which combines DynaLog and our machine learning-based classifier for Source Code Analysis of Mobile Applications. Our dataset will contain around 20000 applications to test and analyze vulnerabilities. We will perform dynamic analysis and separate the classification of vulnerable applications and safe applications. Our results show that we can detect vulnerabilities through our proposed system while reviewing code and provide better results than other existing frameworks. We have evaluated our large dataset with the pervasive way so we can detect even small privacy leak which can harm our app. Finally, we have compared results with existing methods, and framework performance is better than other methods.
Mehra, Misha, Paranjape, Jay N., Ribeiro, Vinay J..
2021.
Improving ML Detection of IoT Botnets using Comprehensive Data and Feature Sets. 2021 International Conference on COMmunication Systems NETworkS (COMSNETS). :438—446.
In recent times, the world has seen a tremendous increase in the number of attacks on IoT devices. A majority of these attacks have been botnet attacks, where an army of compromised IoT devices is used to launch DDoS attacks on targeted systems. In this paper, we study how the choice of a dataset and the extracted features determine the performance of a Machine Learning model, given the task of classifying Linux Binaries (ELFs) as being benign or malicious. Our work focuses on Linux systems since embedded Linux is the more popular choice for building today’s IoT devices and systems. We propose using 4 different types of files as the dataset for any ML model. These include system files, IoT application files, IoT botnet files and general malware files. Further, we propose using static, dynamic as well as network features to do the classification task. We show that existing methods leave out one or the other features, or file types and hence, our model outperforms them in terms of accuracy in detecting these files. While enhancing the dataset adds to the robustness of a model, utilizing all 3 types of features decreases the false positive and false negative rates non-trivially. We employ an exhaustive scenario based method for evaluating a ML model and show the importance of including each of the proposed files in a dataset. We also analyze the features and try to explain their importance for a model, using observed trends in different benign and malicious files. We perform feature extraction using the open source Limon sandbox, which prior to this work has been tested only on Ubuntu 14. We installed and configured it for Ubuntu 18, the documentation of which has been shared on Github.
Hahanov, V.I., Saprykin, A.S..
2021.
Federated Machine Learning Architecture for Searching Malware. 2021 IEEE East-West Design Test Symposium (EWDTS). :1—4.
Modern technologies for searching viruses, cloud-edge computing, and also federated algorithms and machine learning architectures are shown. The architectures for searching malware based on the xor metric applied in the design and test of computing systems are proposed. A Federated ML method is proposed for searching for malware, which significantly speeds up learning without the private big data of users. A federated infrastructure of cloud-edge computing is described. The use of signature analysis and the assertion engine for searching malware is shown. The paradigm of LTF-computing for searching destructive components in software applications is proposed.
Gustafson, Erik, Holzman, Burt, Kowalkowski, James, Lamm, Henry, Li, Andy C. Y., Perdue, Gabriel, Isakov, Sergei V., Martin, Orion, Thomson, Ross, Beall, Jackson et al..
2021.
Large scale multi-node simulations of ℤ2 gauge theory quantum circuits using Google Cloud Platform. 2021 IEEE/ACM Second International Workshop on Quantum Computing Software (QCS). :72—79.
Simulating quantum field theories on a quantum computer is one of the most exciting fundamental physics applications of quantum information science. Dynamical time evolution of quantum fields is a challenge that is beyond the capabilities of classical computing, but it can teach us important lessons about the fundamental fabric of space and time. Whether we may answer scientific questions of interest using near-term quantum computing hardware is an open question that requires a detailed simulation study of quantum noise. Here we present a large scale simulation study powered by a multi-node implementation of qsim using the Google Cloud Platform. We additionally employ newly-developed GPU capabilities in qsim and show how Tensor Processing Units — Application-specific Integrated Circuits (ASICs) specialized for Machine Learning — may be used to dramatically speed up the simulation of large quantum circuits. We demonstrate the use of high performance cloud computing for simulating ℤ2 quantum field theories on system sizes up to 36 qubits. We find this lattice size is not able to simulate our problem and observable combination with sufficient accuracy, implying more challenging observables of interest for this theory are likely beyond the reach of classical computation using exact circuit simulation.