Visible to the public Biblio

Filters: Keyword is system reliability  [Clear All Filters]
2021-03-29
Fajri, M., Hariyanto, N., Gemsjaeger, B..  2020.  Automatic Protection Implementation Considering Protection Assessment Method of DER Penetration for Smart Distribution Network. 2020 International Conference on Technology and Policy in Energy and Electric Power (ICT-PEP). :323—328.
Due to geographical locations of Indonesia, some technology such as hydro and solar photovoltaics are very attractive to be used and developed. Distribution Energy Resources (DER) is the appropriate schemes implemented to achieve optimal operation respecting the location and capacity of the plant. The Gorontalo sub-system network was chosen as a case study considering both of micro-hydro and PV as contributed to supply the grid. The needs of a smart electrical system are required to improve reliability, power quality, and adaptation to any circumstances during DER application. While the topology was changing over time, intermittent of DER output and bidirectional power flow can be overcome with smart grid systems. In this study, an automation algorithm has been conducted to aid the engineers in solving the protection problems caused by DER implementation. The Protection Security Assessment (PSA) method is used to evaluate the state of the protection system. Determine the relay settings using an adaptive rule-based method on expert systems. The application with a Graphical User Interface (GUI) has been developed to make user easier to get the specific relay settings and locations which are sensitive, fast, reliable, and selective.
2020-06-01
Halba, Khalid, Griffor, Edward, Kamongi, Patrick, Roth, Thomas.  2019.  Using Statistical Methods and Co-Simulation to Evaluate ADS-Equipped Vehicle Trustworthiness. 2019 Electric Vehicles International Conference (EV). :1–5.

With the increasing interest in studying Automated Driving System (ADS)-equipped vehicles through simulation, there is a growing need for comprehensive and agile middleware to provide novel Virtual Analysis (VA) functions of ADS-equipped vehicles towards enabling a reliable representation for pre-deployment test. The National Institute of Standards and Technology (NIST) Universal Cyber-physical systems Environment for Federation (UCEF) is such a VA environment. It provides Application Programming Interfaces (APIs) capable of ensuring synchronized interactions across multiple simulation platforms such as LabVIEW, OMNeT++, Ricardo IGNITE, and Internet of Things (IoT) platforms. UCEF can aid engineers and researchers in understanding the impact of different constraints associated with complex cyber-physical systems (CPS). In this work UCEF is used to produce a simulated Operational Domain Design (ODD) for ADS-equipped vehicles where control (drive cycle/speed pattern), sensing (obstacle detection, traffic signs and lights), and threats (unusual signals, hacked sources) are represented as UCEF federates to simulate a drive cycle and to feed it to vehicle dynamics simulators (e.g. OpenModelica or Ricardo IGNITE) through the Functional Mock-up Interface (FMI). In this way we can subject the vehicle to a wide range of scenarios, collect data on the resulting interactions, and analyze those interactions using metrics to understand trustworthiness impact. Trustworthiness is defined here as in the NIST Framework for Cyber-Physical Systems, and is comprised of system reliability, resiliency, safety, security, and privacy. The goal of this work is to provide an example of an experimental design strategy using Fractional Factorial Design for statistically assessing the most important safety metrics in ADS-equipped vehicles.

2020-05-18
Lal Senanayaka, Jagath Sri, Van Khang, Huynh, Robbersmyr, Kjell G..  2018.  Multiple Fault Diagnosis of Electric Powertrains Under Variable Speeds Using Convolutional Neural Networks. 2018 XIII International Conference on Electrical Machines (ICEM). :1900–1905.
Electric powertrains are widely used in automotive and renewable energy industries. Reliable diagnosis for defects in the critical components such as bearings, gears and stator windings, is important to prevent failures and enhance the system reliability and power availability. Most of existing fault diagnosis methods are based on specific characteristic frequencies to single faults at constant speed operations. Once multiple faults occur in the system, such a method may not detect the faults effectively and may give false alarms. Furthermore, variable speed operations render a challenge of analysing nonstationary signals. In this work, a deep learning-based fault diagnosis method is proposed to detect common faults in the electric powertrains. The proposed method is based on pattern recognition using convolutional neural network to detect effectively not only single faults at constant speed but also multiple faults in variable speed operations. The effectiveness of the proposed method is validated via an in-house experimental setup.
2020-02-10
Muka, Romina, Haugli, Fredrik Bakkevig, Vefsnmo, Hanne, Heegaard, Poul E..  2019.  Information Inconsistencies in Smart Distribution Grids under Different Failure Causes modelled by Stochastic Activity Networks. 2019 AEIT International Annual Conference (AEIT). :1–6.
The ongoing digitalization of the power distribution grid will improve the operational support and automation which is believed to increase the system reliability. However, in an integrated and interdependent cyber-physical system, new threats appear which must be understood and dealt with. Of particular concern, in this paper, is the causes of an inconsistent view between the physical system (here power grid) and the Information and Communication Technology (ICT) system (here Distribution Management System). In this paper we align the taxonomy used in International Electrotechnical Commission (power eng.) and International Federation for Information Processing (ICT community), define a metric for inconsistencies, and present a modelling approach using Stochastic Activity Networks to assess the consequences of inconsistencies. The feasibility of the approach is demonstrated in a simple use case.
2020-01-20
Ajaei, F. Badrkhani, Mohammadi, J., Stevens, G., Akhavan, E..  2019.  Hybrid AC/DC Microgrid Configurations for a Net-Zero Energy Community. 2019 IEEE/IAS 55th Industrial and Commercial Power Systems Technical Conference (I CPS). :1–7.

The hybrid microgrid is attracting great attention in recent years as it combines the main advantages of the alternating current (AC) and direct current (DC) microgrids. It is one of the best candidates to support a net-zero energy community. Thus, this paper investigates and compares different hybrid AC/DC microgrid configurations that are suitable for a net-zero energy community. Four different configurations are compared with each other in terms of their impacts on the overall system reliability, expandability, load shedding requirements, power sharing issues, net-zero energy capability, number of the required interface converters, and the requirement of costly medium-voltage components. The results of the investigations indicate that the best results are achieved when each building is enabled to supply its critical loads using an independent AC microgrid that is interfaced to the DC microgrid through a dedicated interface converter.

2019-12-30
Iqbal, Maryam, Iqbal, Mohammad Ayman.  2019.  Attacks Due to False Data Injection in Smart Grids: Detection Protection. 2019 1st Global Power, Energy and Communication Conference (GPECOM). :451-455.

As opposed to a traditional power grid, a smart grid can help utilities to save energy and therefore reduce the cost of operation. It also increases reliability of the system In smart grids the quality of monitoring and control can be adequately improved by incorporating computing and intelligent communication knowledge. However, this exposes the system to false data injection (FDI) attacks and the system becomes vulnerable to intrusions. Therefore, it is important to detect such false data injection attacks and provide an algorithm for the protection of system against such attacks. In this paper a comparison between three FDI detection methods has been made. An H2 control method has then been proposed to detect and control the false data injection on a 12th order model of a smart grid. Disturbances and uncertainties were added to the system and the results show the system to be fully controllable. This paper shows the implementation of a feedback controller to fully detect and mitigate the false data injection attacks. The controller can be incorporated in real life smart grid operations.

2019-12-16
Zhu, Yan, Yang, Shuai, Chu, William Cheng-Chung, Feng, Rongquan.  2019.  FlashGhost: Data Sanitization with Privacy Protection Based on Frequent Colliding Hash Table. 2019 IEEE International Conference on Services Computing (SCC). :90–99.

Today's extensive use of Internet creates huge volumes of data by users in both client and server sides. Normally users don't want to store all the data in local as well as keep archive in the server. For some unwanted data, such as trash, cache and private data, needs to be deleted periodically. Explicit deletion could be applied to the local data, while it is a troublesome job. But there is no transparency to users on the personal data stored in the server. Since we have no knowledge of whether they're cached, copied and archived by the third parties, or sold by the service provider. Our research seeks to provide an automatic data sanitization system to make data could be self-destructing. Specifically, we give data a life cycle, which would be erased automatically when at the end of its life, and the destroyed data cannot be recovered by any effort. In this paper, we present FlashGhost, which is a system that meets this challenge through a novel integration of cryptography techniques with the frequent colliding hash table. In this system, data will be unreadable and rendered unrecoverable by overwriting multiple times after its validity period has expired. Besides, the system reliability is enhanced by threshold cryptography. We also present a mathematical model and verify it by a number of experiments, which demonstrate theoretically and experimentally our system is practical to use and meet the data auto-sanitization goal described above.

2019-10-02
Zhang, Y., Eisele, S., Dubey, A., Laszka, A., Srivastava, A. K..  2019.  Cyber-Physical Simulation Platform for Security Assessment of Transactive Energy Systems. 2019 7th Workshop on Modeling and Simulation of Cyber-Physical Energy Systems (MSCPES). :1–6.
Transactive energy systems (TES) are emerging as a transformative solution for the problems that distribution system operators face due to an increase in the use of distributed energy resources and rapid growth in scalability of managing active distribution system (ADS). On the one hand, these changes pose a decentralized power system control problem, requiring strategic control to maintain reliability and resiliency for the community and for the utility. On the other hand, they require robust financial markets while allowing participation from diverse prosumers. To support the computing and flexibility requirements of TES while preserving privacy and security, distributed software platforms are required. In this paper, we enable the study and analysis of security concerns by developing Transactive Energy Security Simulation Testbed (TESST), a TES testbed for simulating various cyber attacks. In this work, the testbed is used for TES simulation with centralized clearing market, highlighting weaknesses in a centralized system. Additionally, we present a blockchain enabled decentralized market solution supported by distributed computing for TES, which on one hand can alleviate some of the problems that we identify, but on the other hand, may introduce newer issues. Future study of these differing paradigms is necessary and will continue as we develop our security simulation testbed.
2015-05-05
Kaci, A., Kamwa, I., Dessaint, L.-A., Guillon, S..  2014.  Phase angles as predictors of network dynamic security limits and further implications. PES General Meeting | Conference Exposition, 2014 IEEE. :1-6.

In the United States, the number of Phasor Measurement Units (PMU) will increase from 166 networked devices in 2010 to 1043 in 2014. According to the Department of Energy, they are being installed in order to “evaluate and visualize reliability margin (which describes how close the system is to the edge of its stability boundary).” However, there is still a lot of debate in academia and industry around the usefulness of phase angles as unambiguous predictors of dynamic stability. In this paper, using 4-year of actual data from Hydro-Québec EMS, it is shown that phase angles enable satisfactory predictions of power transfer and dynamic security margins across critical interface using random forest models, with both explanation level and R-squares accuracy exceeding 99%. A generalized linear model (GLM) is next implemented to predict phase angles from day-ahead to hour-ahead time frames, using historical phase angles values and load forecast. Combining GLM based angles forecast with random forest mapping of phase angles to power transfers result in a new data-driven approach for dynamic security monitoring.
 

Kaci, A., Kamwa, I., Dessaint, L.A., Guillon, S..  2014.  Synchrophasor Data Baselining and Mining for Online Monitoring of Dynamic Security Limits. Power Systems, IEEE Transactions on. 29:2681-2695.

When the system is in normal state, actual SCADA measurements of power transfers across critical interfaces are continuously compared with limits determined offline and stored in look-up tables or nomograms in order to assess whether the network is secure or insecure and inform the dispatcher to take preventive action in the latter case. However, synchrophasors could change this paradigm by enabling new features, the phase-angle differences, which are well-known measures of system stress, with the added potential to increase system visibility. The paper develops a systematic approach to baseline the phase-angles versus actual transfer limits across system interfaces and enable synchrophasor-based situational awareness (SBSA). Statistical methods are first used to determine seasonal exceedance levels of angle shifts that can allow real-time scoring and detection of atypical conditions. Next, key buses suitable for SBSA are identified using correlation and partitioning around medoid (PAM) clustering. It is shown that angle shifts of this subset of 15% of the network backbone buses can be effectively used as features in ensemble decision tree-based forecasting of seasonal security margins across critical interfaces.