Biblio
Security awareness and energy efficiency are two crucial optimization issues present in MANET where the network topology gets adequately changed and is not predictable which affects the lifetime of the MANET. They are extensively analyzed to improvise the lifetime of the MANET. This paper concentrates on the design of an energy-efficient security-aware fuzzy-based clustering (SFLC) technique to make the network secure and energy-efficient. The selection of cluster heads (CHD) process using fuzzy logic (FL) involves the trust factor as an important input variable. Once the CHDs are elected successfully, clusters will be constructed and start to communication with one another as well as the base station (BS). The presented SFLC model is simulated using NS2 and the performance is validated in terms of energy, lifetime and computation time.
Large-scale sensing and actuation infrastructures have allowed buildings to achieve significant energy savings; at the same time, these technologies introduce significant privacy risks that must be addressed. In this paper, we present a framework for modeling the trade-off between improved control performance and increased privacy risks due to occupancy sensing. More specifically, we consider occupancy-based HVAC control as the control objective and the location traces of individual occupants as the private variables. Previous studies have shown that individual location information can be inferred from occupancy measurements. To ensure privacy, we design an architecture that distorts the occupancy data in order to hide individual occupant location information while maintaining HVAC performance. Using mutual information between the individual's location trace and the reported occupancy measurement as a privacy metric, we are able to optimally design a scheme to minimize privacy risk subject to a control performance guarantee. We evaluate our framework using real-world occupancy data: first, we verify that our privacy metric accurately assesses the adversary's ability to infer private variables from the distorted sensor measurements; then, we show that control performance is maintained through simulations of building operations using these distorted occupancy readings.
Ever-growing performance of supercomputers nowadays brings demanding requirements of energy efficiency and resilience, due to rapidly expanding size and duration in use of the large-scale computing systems. Many application/architecture-dependent parameters that determine energy efficiency and resilience individually have causal effects with each other, which directly affect the trade-offs among performance, energy efficiency and resilience at scale. To enable high-efficiency management for large-scale High-Performance Computing (HPC) systems nowadays, quantitatively understanding the entangled effects among performance, energy efficiency, and resilience is thus required. While previous work focuses on exploring energy-saving and resilience-enhancing opportunities separately, little has been done to theoretically and empirically investigate the interplay between energy efficiency and resilience at scale. In this article, by extending the Amdahl’s Law and the Karp-Flatt Metric, taking resilience into consideration, we quantitatively model the integrated energy efficiency in terms of performance per Watt and showcase the trade-offs among typical HPC parameters, such as number of cores, frequency/voltage, and failure rates. Experimental results for a wide spectrum of HPC benchmarks on two HPC systems show that the proposed models are accurate in extrapolating resilience-aware performance and energy efficiency, and capable of capturing the interplay among various energy-saving and resilience factors. Moreover, the models can help find the optimal HPC configuration for the highest integrated energy efficiency, in the presence of failures and applied resilience techniques.
Presented at NSA Science of Security Quarterly Lablet Meeting, July 2016.
Presented at a tutorial at the Symposium and Bootcamp on the Science of Security (HotSoS 2015), April 2015.
Today's cyber-physical systems (CPSs) can have very different characteristics in terms of control algorithms, configurations, underlying infrastructure, communication protocols, and real-time requirements. Despite these variations, they all face the threat of malicious attacks that exploit the vulnerabilities in the cyber domain as footholds to introduce safety violations in the physical processes. In this paper, we focus on a class of attacks that impact the physical processes without introducing anomalies in the cyber domain. We present the common challenges in detecting this type of attacks in the contexts of two very different CPSs (i.e., power grids and surgical robots). In addition, we present a general principle for detecting such cyber-physical attacks, which combine the knowledge of both cyber and physical domains to estimate the adverse consequences of malicious activities in a timely manner.
The University of Illinois at Urbana Champaign (Illinois), Pacific Northwest National Labs (PNNL), and the University of Southern California Information Sciences Institute (USC-ISI) consortium is working toward providing tools and expertise to enable collaborative research to improve security and resiliency of cyber physical systems. In this extended abstract we discuss the challenges and the solution space. We demonstrate the feasibility of some of the proposed components through a wide-area situational awareness experiment for the power grid across the three sites.