Visible to the public Biblio

Found 765 results

Filters: Keyword is Training  [Clear All Filters]
2020-02-10
Dan, Kenya, Kitagawa, Naoya, Sakuraba, Shuji, Yamai, Nariyoshi.  2019.  Spam Domain Detection Method Using Active DNS Data and E-Mail Reception Log. 2019 IEEE 43rd Annual Computer Software and Applications Conference (COMPSAC). 1:896–899.

E-mail is widespread and an essential communication technology in modern times. Since e-mail has problems with spam mails and spoofed e-mails, countermeasures are required. Although SPF, DKIM and DMARC have been proposed as sender domain authentication, these mechanisms cannot detect non-spoofing spam mails. To overcome this issue, this paper proposes a method to detect spam domains by supervised learning with features extracted from e-mail reception log and active DNS data, such as the result of Sender Authentication, the Sender IP address, the number of each DNS record, and so on. As a result of the experiment, our method can detect spam domains with 88.09% accuracy and 97.11% precision. We confirmed that our method can detect spam domains with detection accuracy 19.40% higher than the previous study by utilizing not only active DNS data but also e-mail reception log in combination.

2020-01-28
Hou, Size, Huang, Xin.  2019.  Use of Machine Learning in Detecting Network Security of Edge Computing System. 2019 IEEE 4th International Conference on Big Data Analytics (ICBDA). :252–256.

This study has built a simulation of a smart home system by the Alibaba ECS. The architecture of hardware was based on edge computing technology. The whole method would design a clear classifier to find the boundary between regular and mutation codes. It could be applied in the detection of the mutation code of network. The project has used the dataset vector to divide them into positive and negative type, and the final result has shown the RBF-function SVM method perform best in this mission. This research has got a good network security detection in the IoT systems and increased the applications of machine learning.

Krishna, Gutha Jaya, Ravi, Vadlamani.  2019.  Keystroke Based User Authentication Using Modified Differential Evolution. TENCON 2019 - 2019 IEEE Region 10 Conference (TENCON). :739–744.

User Authentication is a difficult problem yet to be addressed accurately. Little or no work is reported in literature dealing with clustering-based anomaly detection techniques for user authentication for keystroke data. Therefore, in this paper, Modified Differential Evolution (MDE) based subspace anomaly detection technique is proposed for user authentication in the context of behavioral biometrics using keystroke dynamics features. Thus, user authentication is posed as an anomaly detection problem. Anomalies in CMU's keystroke dynamics dataset are identified using subspace-based and distance-based techniques. It is observed that, among the proposed techniques, MDE based subspace anomaly detection technique yielded the highest Area Under ROC Curve (AUC) for user authentication problem. We also performed a Wilcoxon Signed Rank statistical test to corroborate our results statistically.

Patel, Yogesh, Ouazzane, Karim, Vassilev, Vassil T., Faruqi, Ibrahim, Walker, George L..  2019.  Keystroke Dynamics Using Auto Encoders. 2019 International Conference on Cyber Security and Protection of Digital Services (Cyber Security). :1–8.

In the modern day and age, credential based authentication systems no longer provide the level of security that many organisations and their services require. The level of trust in passwords has plummeted in recent years, with waves of cyber attacks predicated on compromised and stolen credentials. This method of authentication is also heavily reliant on the individual user's choice of password. There is the potential to build levels of security on top of credential based authentication systems, using a risk based approach, which preserves the seamless authentication experience for the end user. One method of adding this security to a risk based authentication framework, is keystroke dynamics. Monitoring the behaviour of the users and how they type, produces a type of digital signature which is unique to that individual. Learning this behaviour allows dynamic flags to be applied to anomalous typing patterns that are produced by attackers using stolen credentials, as a potential risk of fraud. Methods from statistics and machine learning have been explored to try and implement such solutions. This paper will look at an Autoencoder model for learning the keystroke dynamics of specific users. The results from this paper show an improvement over the traditional tried and tested statistical approaches with an Equal Error Rate of 6.51%, with the additional benefits of relatively low training times and less reliance on feature engineering.

2020-01-27
Qureshi, Ayyaz-Ul-Haq, Larijani, Hadi, Javed, Abbas, Mtetwa, Nhamoinesu, Ahmad, Jawad.  2019.  Intrusion Detection Using Swarm Intelligence. 2019 UK/ China Emerging Technologies (UCET). :1–5.
Recent advances in networking and communication technologies have enabled Internet-of-Things (IoT) devices to communicate more frequently and faster. An IoT device typically transmits data over the Internet which is an insecure channel. Cyber attacks such as denial-of-service (DoS), man-in-middle, and SQL injection are considered as big threats to IoT devices. In this paper, an anomaly-based intrusion detection scheme is proposed that can protect sensitive information and detect novel cyber-attacks. The Artificial Bee Colony (ABC) algorithm is used to train the Random Neural Network (RNN) based system (RNN-ABC). The proposed scheme is trained on NSL-KDD Train+ and tested for unseen data. The experimental results suggest that swarm intelligence and RNN successfully classify novel attacks with an accuracy of 91.65%. Additionally, the performance of the proposed scheme is also compared with a hybrid multilayer perceptron (MLP) based intrusion detection system using sensitivity, mean of mean squared error (MMSE), the standard deviation of MSE (SDMSE), best mean squared error (BMSE) and worst mean squared error (WMSE) parameters. All experimental tests confirm the robustness and high accuracy of the proposed scheme.
Zhang, Naiji, Jaafar, Fehmi, Malik, Yasir.  2019.  Low-Rate DoS Attack Detection Using PSD Based Entropy and Machine Learning. 2019 6th IEEE International Conference on Cyber Security and Cloud Computing (CSCloud)/ 2019 5th IEEE International Conference on Edge Computing and Scalable Cloud (EdgeCom). :59–62.
The Distributed Denial of Service attack is one of the most common attacks and it is hard to mitigate, however, it has become more difficult while dealing with the Low-rate DoS (LDoS) attacks. The LDoS exploits the vulnerability of TCP congestion-control mechanism by sending malicious traffic at the low constant rate and influence the victim machine. Recently, machine learning approaches are applied to detect the complex DDoS attacks and improve the efficiency and robustness of the intrusion detection system. In this research, the algorithm is designed to balance the detection rate and its efficiency. The detection algorithm combines the Power Spectral Density (PSD) entropy function and Support Vector Machine to detect LDoS traffic from normal traffic. In our solution, the detection rate and efficiency are adjustable based on the parameter in the decision algorithm. To have high efficiency, the detection method will always detect the attacks by calculating PSD-entropy first and compare it with the two adaptive thresholds. The thresholds can efficiently filter nearly 19% of the samples with a high detection rate. To minimize the computational cost and look only for the patterns that are most relevant for detection, Support Vector Machine based machine learning model is applied to learn the traffic pattern and select appropriate features for detection algorithm. The experimental results show that the proposed approach can detect 99.19% of the LDoS attacks and has an O (n log n) time complexity in the best case.
2020-01-21
Taib, Abidah Mat, Othman, Nor Arzami, Hamid, Ros Syamsul, Halim, Iman Hazwam Abd.  2019.  A Learning Kit on IPv6 Deployment and Its Security Challenges for Neophytes. 2019 21st International Conference on Advanced Communication Technology (ICACT). :419–424.
Understanding the IP address depletion and the importance of handling security issues in IPv6 deployment can make IT personnel becomes more functional and helpful to the organization. It also applied to the management people who are responsible for approving the budget or organization policy related to network security. Unfortunately, new employees or fresh graduates may not really understand the challenge related to IPv6 deployment. In order to be equipped with appropriate knowledge and skills, these people may require a few weeks of attending workshops or training. Thus, of course involving some implementation cost as well as sacrificing allocated working hours. As an alternative to save cost and to help new IT personnel become quickly educated and familiar with IPv6 deployment issues, this paper presented a learning kit that has been designed to include self-learning features that can help neophytes to learn about IPv6 at their own pace. The kit contains some compact notes, brief security model and framework as well as a guided module with supporting quizzes to maintain a better understanding of the topics. Since IPv6 is still in the early phase of implementation in most of developing countries, this kit can be an additional assisting tool to accelerate the deployment of IPv6 environment in any organization. The kit also can be used by teachers and trainers as a supporting tool in the classroom. The pre-alpha testing has attracted some potential users and the findings proved their acceptance. The kit has prospective to be further enhanced and commercialized.
Zhang, Jiange, Chen, Yue, Yang, Kuiwu, Zhao, Jian, Yan, Xincheng.  2019.  Insider Threat Detection Based on Adaptive Optimization DBN by Grid Search. 2019 IEEE International Conference on Intelligence and Security Informatics (ISI). :173–175.

Aiming at the problem that one-dimensional parameter optimization in insider threat detection using deep learning will lead to unsatisfactory overall performance of the model, an insider threat detection method based on adaptive optimization DBN by grid search is designed. This method adaptively optimizes the learning rate and the network structure which form the two-dimensional grid, and adaptively selects a set of optimization parameters for threat detection, which optimizes the overall performance of the deep learning model. The experimental results show that the method has good adaptability. The learning rate of the deep belief net is optimized to 0.6, the network structure is optimized to 6 layers, and the threat detection rate is increased to 98.794%. The training efficiency and the threat detection rate of the deep belief net are improved.

2020-01-20
Halimaa A., Anish, Sundarakantham, K..  2019.  Machine Learning Based Intrusion Detection System. 2019 3rd International Conference on Trends in Electronics and Informatics (ICOEI). :916–920.

In order to examine malicious activity that occurs in a network or a system, intrusion detection system is used. Intrusion Detection is software or a device that scans a system or a network for a distrustful activity. Due to the growing connectivity between computers, intrusion detection becomes vital to perform network security. Various machine learning techniques and statistical methodologies have been used to build different types of Intrusion Detection Systems to protect the networks. Performance of an Intrusion Detection is mainly depends on accuracy. Accuracy for Intrusion detection must be enhanced to reduce false alarms and to increase the detection rate. In order to improve the performance, different techniques have been used in recent works. Analyzing huge network traffic data is the main work of intrusion detection system. A well-organized classification methodology is required to overcome this issue. This issue is taken in proposed approach. Machine learning techniques like Support Vector Machine (SVM) and Naïve Bayes are applied. These techniques are well-known to solve the classification problems. For evaluation of intrusion detection system, NSL- KDD knowledge discovery Dataset is taken. The outcomes show that SVM works better than Naïve Bayes. To perform comparative analysis, effective classification methods like Support Vector Machine and Naive Bayes are taken, their accuracy and misclassification rate get calculated.

Sivanantham, S., Abirami, R., Gowsalya, R..  2019.  Comparing the Performance of Adaptive Boosted Classifiers in Anomaly based Intrusion Detection System for Networks. 2019 International Conference on Vision Towards Emerging Trends in Communication and Networking (ViTECoN). :1–5.

The computer network is used by billions of people worldwide for variety of purposes. This has made the security increasingly important in networks. It is essential to use Intrusion Detection Systems (IDS) and devices whose main function is to detect anomalies in networks. Mostly all the intrusion detection approaches focuses on the issues of boosting techniques since results are inaccurate and results in lengthy detection process. The major pitfall in network based intrusion detection is the wide-ranging volume of data gathered from the network. In this paper, we put forward a hybrid anomaly based intrusion detection system which uses Classification and Boosting technique. The Paper is organized in such a way it compares the performance three different Classifiers along with boosting. Boosting process maximizes classification accuracy. Results of proposed scheme will analyzed over different datasets like Intrusion Detection Kaggle Dataset and NSL KDD. Out of vast analysis it is found Random tree provides best average Accuracy rate of around 99.98%, Detection rate of 98.79% and a minimum False Alarm rate.

2020-01-13
Zegzhda, Dmitry, Lavrova, Daria, Khushkeev, Aleksei.  2019.  Detection of information security breaches in distributed control systems based on values prediction of multidimensional time series. 2019 IEEE International Conference on Industrial Cyber Physical Systems (ICPS). :780–784.
Proposed an approach for information security breaches detection in distributed control systems based on prediction of multidimensional time series formed of sensor and actuator data.
2020-01-02
Mar\'ın, Gonzalo, Casas, Pedro, Capdehourat, Germán.  2019.  Deep in the Dark - Deep Learning-Based Malware Traffic Detection Without Expert Knowledge. 2019 IEEE Security and Privacy Workshops (SPW). :36–42.

With the ever-growing occurrence of networking attacks, robust network security systems are essential to prevent and mitigate their harming effects. In recent years, machine learning-based systems have gain popularity for network security applications, usually considering the application of shallow models, where a set of expert handcrafted features are needed to pre-process the data before training. The main problem with this approach is that handcrafted features can fail to perform well given different kinds of scenarios and problems. Deep Learning models can solve this kind of issues using their ability to learn feature representations from input raw or basic, non-processed data. In this paper we explore the power of deep learning models on the specific problem of detection and classification of malware network traffic, using different representations for the input data. As a major advantage as compared to the state of the art, we consider raw measurements coming directly from the stream of monitored bytes as the input to the proposed models, and evaluate different raw-traffic feature representations, including packet and flow-level ones. Our results suggest that deep learning models can better capture the underlying statistics of malicious traffic as compared to classical, shallow-like models, even while operating in the dark, i.e., without any sort of expert handcrafted inputs.

2019-12-30
Tabakhpour, Adel, Abdelaziz, Morad M. A..  2019.  Neural Network Model for False Data Detection in Power System State Estimation. 2019 IEEE Canadian Conference of Electrical and Computer Engineering (CCECE). :1-5.

False data injection is an on-going concern facing power system state estimation. In this work, a neural network is trained to detect the existence of false data in measurements. The proposed approach can make use of historical data, if available, by using them in the training sets of the proposed neural network model. However, the inputs of perceptron model in this work are the residual elements from the state estimation, which are highly correlated. Therefore, their dimension could be reduced by preserving the most informative features from the inputs. To this end, principal component analysis is used (i.e., a data preprocessing technique). This technique is especially efficient for highly correlated data sets, which is the case in power system measurements. The results of different perceptron models that are proposed for detection, are compared to a simple perceptron that produces identical result to the outlier detection scheme. For generating the training sets, state estimation was run for different false data on different measurements in 13-bus IEEE test system, and the residuals are saved as inputs of training sets. The testing results of the trained network show its good performance in detection of false data in measurements.

Toliupa, Serhiy, Tereikovskiy, Ihor, Dychka, Ivan, Tereikovska, Liudmyla, Trush, Alexander.  2019.  The Method of Using Production Rules in Neural Network Recognition of Emotions by Facial Geometry. 2019 3rd International Conference on Advanced Information and Communications Technologies (AICT). :323–327.
The article is devoted to the improvement of neural network means of recognition of emotions on human geometry, which are defined for use in information systems of general purpose. It is shown that modern means of emotional recognition are based on the usual networks of critical disadvantage, because there is a lack of accuracy of recognition under the influence of purchased, characteristic of general-purpose information systems. It is determined that the above remarks relate to the turning of the face and the size of the image. A typical approach to overcoming this disadvantage through training is unacceptable for all protection options that are inappropriate for reasons of duration and compilation of the required training sample. It is proposed to increase the accuracy of recognition by submitting an expert data model to the neural network. An appropriate method for representing expert knowledge is developed. A feature of the method is the use of productive rules and the PNN neural network. Experimental verification of the developed solutions has been carried out. The obtained results allow to increase the efficiency of the termination and disclosure of the set of age networks, the characteristics of which are not presented in the registered statistical data.
Liu, Keng-Cheng, Hsu, Chen-Chien, Wang, Wei-Yen, Chiang, Hsin-Han.  2019.  Real-Time Facial Expression Recognition Based on CNN. 2019 International Conference on System Science and Engineering (ICSSE). :120–123.
In this paper, we propose a method for improving the robustness of real-time facial expression recognition. Although there are many ways to improve the accuracy of facial expression recognition, a revamp of the training framework and image preprocessing allow better results in applications. One existing problem is that when the camera is capturing images in high speed, changes in image characteristics may occur at certain moments due to the influence of light and other factors. Such changes can result in incorrect recognition of the human facial expression. To solve this problem for smooth system operation and maintenance of recognition speed, we take changes in image characteristics at high speed capturing into account. The proposed method does not use the immediate output for reference, but refers to the previous image for averaging to facilitate recognition. In this way, we are able to reduce interference by the characteristics of the images. The experimental results show that after adopting this method, overall robustness and accuracy of facial expression recognition have been greatly improved compared to those obtained by only the convolution neural network (CNN).
Taha, Bilal, Hatzinakos, Dimitrios.  2019.  Emotion Recognition from 2D Facial Expressions. 2019 IEEE Canadian Conference of Electrical and Computer Engineering (CCECE). :1–4.
This work proposes an approach to find and learn informative representations from 2 dimensional gray-level images for facial expression recognition application. The learned features are obtained from a designed convolutional neural network (CNN). The developed CNN enables us to learn features from the images in a highly efficient manner by cascading different layers together. The developed model is computationally efficient since it does not consist of a huge number of layers and at the same time it takes into consideration the overfitting problem. The outcomes from the developed CNN are compared to handcrafted features that span texture and shape features. The experiments conducted on the Bosphours database show that the developed CNN model outperforms the handcrafted features when coupled with a Support Vector Machines (SVM) classifier.
Lian, Zheng, Li, Ya, Tao, Jianhua, Huang, Jian, Niu, Mingyue.  2018.  Region Based Robust Facial Expression Analysis. 2018 First Asian Conference on Affective Computing and Intelligent Interaction (ACII Asia). :1–5.
Facial emotion recognition is an essential aspect in human-machine interaction. In the real-world conditions, it faces many challenges, i.e., illumination changes, large pose variations and partial or full occlusions, which cause different facial areas with different sharpness and completeness. Inspired by this fact, we focus on facial expression recognition based on partial faces in this paper. We compare contribution of seven facial areas of low-resolution images, including nose areas, mouse areas, eyes areas, nose to mouse areas, nose to eyes areas, mouth to eyes areas and the whole face areas. Through analysis on the confusion matrix and the class activation map, we find that mouth regions contain much emotional information compared with nose areas and eyes areas. In the meantime, considering larger facial areas is helpful to judge the expression more precisely. To sum up, contributions of this paper are two-fold: (1) We reveal concerned areas of human in emotion recognition. (2) We quantify the contribution of different facial parts.
2019-12-09
Cococcioni, Marco.  2018.  Computational Intelligence in Maritime Security and Defense: Challenges and Opportunities. 2018 IEEE Symposium Series on Computational Intelligence (SSCI). :1964-1967.

Computational Intelligence (CI) has a great potential in Security & Defense (S&D) applications. Nevertheless, such potential seems to be still under exploited. In this work we first review CI applications in the maritime domain, done in the past decades by NATO Nations. Then we discuss challenges and opportunities for CI in S&D. Finally we argue that a review of the academic training of military officers is highly recommendable, in order to allow them to understand, model and solve new problems, using CI techniques.

2019-11-26
Zabihimayvan, Mahdieh, Doran, Derek.  2019.  Fuzzy Rough Set Feature Selection to Enhance Phishing Attack Detection. 2019 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). :1-6.

Phishing as one of the most well-known cybercrime activities is a deception of online users to steal their personal or confidential information by impersonating a legitimate website. Several machine learning-based strategies have been proposed to detect phishing websites. These techniques are dependent on the features extracted from the website samples. However, few studies have actually considered efficient feature selection for detecting phishing attacks. In this work, we investigate an agreement on the definitive features which should be used in phishing detection. We apply Fuzzy Rough Set (FRS) theory as a tool to select most effective features from three benchmarked data sets. The selected features are fed into three often used classifiers for phishing detection. To evaluate the FRS feature selection in developing a generalizable phishing detection, the classifiers are trained by a separate out-of-sample data set of 14,000 website samples. The maximum F-measure gained by FRS feature selection is 95% using Random Forest classification. Also, there are 9 universal features selected by FRS over all the three data sets. The F-measure value using this universal feature set is approximately 93% which is a comparable result in contrast to the FRS performance. Since the universal feature set contains no features from third-part services, this finding implies that with no inquiry from external sources, we can gain a faster phishing detection which is also robust toward zero-day attacks.

Shukla, Anjali, Rakshit, Arnab, Konar, Amit, Ghosh, Lidia, Nagar, Atulya K..  2018.  Decoding of Mind-Generated Pattern Locks for Security Checking Using Type-2 Fuzzy Classifier. 2018 IEEE Symposium Series on Computational Intelligence (SSCI). :1976-1981.

Brain Computer Interface (BCI) aims at providing a better quality of life to people suffering from neuromuscular disability. This paper establishes a BCI paradigm to provide a biometric security option, used for locking and unlocking personal computers or mobile phones. Although it is primarily meant for the people with neurological disorder, its application can safely be extended for the use of normal people. The proposed scheme decodes the electroencephalogram signals liberated by the brain of the subjects, when they are engaged in selecting a sequence of dots in(6×6)2-dimensional array, representing a pattern lock. The subject, while selecting the right dot in a row, would yield a P300 signal, which is decoded later by the brain-computer interface system to understand the subject's intention. In case the right dots in all the 6 rows are correctly selected, the subject would yield P300 signals six times, which on being decoded by a BCI system would allow the subject to access the system. Because of intra-subjective variation in the amplitude and wave-shape of the P300 signal, a type 2 fuzzy classifier has been employed to classify the presence/absence of the P300 signal in the desired window. A comparison of performances of the proposed classifier with others is also included. The functionality of the proposed system has been validated using the training instances generated for 30 subjects. Experimental results confirm that the classification accuracy for the present scheme is above 90% irrespective of subjects.

2019-11-25
Zuin, Gianlucca, Chaimowicz, Luiz, Veloso, Adriano.  2018.  Learning Transferable Features For Open-Domain Question Answering. 2018 International Joint Conference on Neural Networks (IJCNN). :1–8.

Corpora used to learn open-domain Question-Answering (QA) models are typically collected from a wide variety of topics or domains. Since QA requires understanding natural language, open-domain QA models generally need very large training corpora. A simple way to alleviate data demand is to restrict the domain covered by the QA model, leading thus to domain-specific QA models. While learning improved QA models for a specific domain is still challenging due to the lack of sufficient training data in the topic of interest, additional training data can be obtained from related topic domains. Thus, instead of learning a single open-domain QA model, we investigate domain adaptation approaches in order to create multiple improved domain-specific QA models. We demonstrate that this can be achieved by stratifying the source dataset, without the need of searching for complementary data unlike many other domain adaptation approaches. We propose a deep architecture that jointly exploits convolutional and recurrent networks for learning domain-specific features while transferring domain-shared features. That is, we use transferable features to enable model adaptation from multiple source domains. We consider different transference approaches designed to learn span-level and sentence-level QA models. We found that domain-adaptation greatly improves sentence-level QA performance, and span-level QA benefits from sentence information. Finally, we also show that a simple clustering algorithm may be employed when the topic domains are unknown and the resulting loss in accuracy is negligible.

2019-11-04
Khan, Muhammad Imran, O’Sullivan, Barry, Foley, Simon N..  2018.  Towards Modelling Insiders Behaviour as Rare Behaviour to Detect Malicious RDBMS Access. 2018 IEEE International Conference on Big Data (Big Data). :3094–3099.
The heart of any enterprise is its databases where the application data is stored. Organizations frequently place certain access control mechanisms to prevent access by unauthorized employees. However, there is persistent concern about malicious insiders. Anomaly-based intrusion detection systems are known to have the potential to detect insider attacks. Accurate modelling of insiders behaviour within the framework of Relational Database Management Systems (RDBMS) requires attention. The majority of past research considers SQL queries in isolation when modelling insiders behaviour. However, a query in isolation can be safe, while a sequence of queries might result in malicious access. In this work, we consider sequences of SQL queries when modelling behaviours to detect malicious RDBMS accesses using frequent and rare item-sets mining. Preliminary results demonstrate that the proposed approach has the potential to detect malicious RDBMS accesses by insiders.
Sallam, Asmaa, Bertino, Elisa.  2018.  Detection of Temporal Data Ex-Filtration Threats to Relational Databases. 2018 IEEE 4th International Conference on Collaboration and Internet Computing (CIC). :146–155.
According to recent reports, the most common insider threats to systems are unauthorized access to or use of corporate information and exposure of sensitive data. While anomaly detection techniques have proved to be effective in the detection of early signs of data theft, these techniques are not able to detect sophisticated data misuse scenarios in which malicious insiders seek to aggregate knowledge by executing and combining the results of several queries. We thus need techniques that are able to track users' actions across time to detect correlated ones that collectively flag anomalies. In this paper, we propose such techniques for the detection of anomalous accesses to relational databases. Our approach is to monitor users' queries, sequences of queries and sessions of database connection to detect queries that retrieve amounts of data larger than the normal. Our evaluation of the proposed techniques indicates that they are very effective in the detection of anomalies.
Ramachandran, Raji, Nidhin, R, Shogil, P P.  2018.  Anomaly Detection in Role Administered Relational Databases — A Novel Method. 2018 International Conference on Advances in Computing, Communications and Informatics (ICACCI). :1017–1021.
A significant amount of attempt has been lately committed for the progress of Database Management Systems (DBMS) that ensures high assertion and high security. Common security measures for database like access control measures, validation, encryption technologies, etc are not sufficient enough to secure the data from all the threats. By using an anomaly detection system, we are able to enhance the security feature of the Database management system. We are taking an assumption that the database access control is role based. In this paper, a mechanism is proposed for finding the anomaly in database by using machine learning technique such as classification. The importance of providing anomaly detection technique to a Role-Based Access Control database is that it will help for the protection against the insider attacks. The experimentation results shows that the system is able to detect intrusion effectively with high accuracy and high F1-score.
2019-09-05
Sun, Y., Zhang, L., Zhao, C..  2018.  A Study of Network Covert Channel Detection Based on Deep Learning. 2018 2nd IEEE Advanced Information Management,Communicates,Electronic and Automation Control Conference (IMCEC). :637-641.

Information security has become a growing concern. Computer covert channel which is regarded as an important area of information security research gets more attention. In order to detect these covert channels, a variety of detection algorithms are proposed in the course of the research. The algorithms of machine learning type show better results in these detection algorithms. However, the common machine learning algorithms have many problems in the testing process and have great limitations. Based on the deep learning algorithm, this paper proposes a new idea of network covert channel detection and forms a new detection model. On the one hand, this algorithmic model can detect more complex covert channels and, on the other hand, greatly improve the accuracy of detection due to the use of a new deep learning model. By optimizing this test model, we can get better results on the evaluation index.