Visible to the public Biblio

Found 765 results

Filters: Keyword is Training  [Clear All Filters]
2019-03-04
Aborisade, O., Anwar, M..  2018.  Classification for Authorship of Tweets by Comparing Logistic Regression and Naive Bayes Classifiers. 2018 IEEE International Conference on Information Reuse and Integration (IRI). :269–276.

At a time when all it takes to open a Twitter account is a mobile phone, the act of authenticating information encountered on social media becomes very complex, especially when we lack measures to verify digital identities in the first place. Because the platform supports anonymity, fake news generated by dubious sources have been observed to travel much faster and farther than real news. Hence, we need valid measures to identify authors of misinformation to avert these consequences. Researchers propose different authorship attribution techniques to approach this kind of problem. However, because tweets are made up of only 280 characters, finding a suitable authorship attribution technique is a challenge. This research aims to classify authors of tweets by comparing machine learning methods like logistic regression and naive Bayes. The processes of this application are fetching of tweets, pre-processing, feature extraction, and developing a machine learning model for classification. This paper illustrates the text classification for authorship process using machine learning techniques. In total, there were 46,895 tweets used as both training and testing data, and unique features specific to Twitter were extracted. Several steps were done in the pre-processing phase, including removal of short texts, removal of stop-words and punctuations, tokenizing and stemming of texts as well. This approach transforms the pre-processed data into a set of feature vector in Python. Logistic regression and naive Bayes algorithms were applied to the set of feature vectors for the training and testing of the classifier. The logistic regression based classifier gave the highest accuracy of 91.1% compared to the naive Bayes classifier with 89.8%.

2019-02-25
Xu, H., Hu, L., Liu, P., Xiao, Y., Wang, W., Dayal, J., Wang, Q., Tang, Y..  2018.  Oases: An Online Scalable Spam Detection System for Social Networks. 2018 IEEE 11th International Conference on Cloud Computing (CLOUD). :98–105.
Web-based social networks enable new community-based opportunities for participants to engage, share their thoughts, and interact with each other. Theses related activities such as searching and advertising are threatened by spammers, content polluters, and malware disseminators. We propose a scalable spam detection system, termed Oases, for uncovering social spam in social networks using an online and scalable approach. The novelty of our design lies in two key components: (1) a decentralized DHT-based tree overlay deployment for harvesting and uncovering deceptive spam from social communities; and (2) a progressive aggregation tree for aggregating the properties of these spam posts for creating new spam classifiers to actively filter out new spam. We design and implement the prototype of Oases and discuss the design considerations of the proposed approach. Our large-scale experiments using real-world Twitter data demonstrate scalability, attractive load-balancing, and graceful efficiency in online spam detection for social networks.
Vishagini, V., Rajan, A. K..  2018.  An Improved Spam Detection Method with Weighted Support Vector Machine. 2018 International Conference on Data Science and Engineering (ICDSE). :1–5.
Email is the most admired method of exchanging messages using the Internet. One of the intimidations to email users is to detect the spam they receive. This can be addressed using different detection and filtering techniques. Machine learning algorithms, especially Support Vector Machine (SVM), can play vital role in spam detection. We propose the use of weighted SVM for spam filtering using weight variables obtained by KFCM algorithm. The weight variables reflect the importance of different classes. The misclassification of emails is reduced by the growth of weight value. We evaluate the impact of spam detection using SVM, WSVM with KPCM and WSVM with KFCM.UCI Repository SMS Spam base dataset is used for our experimentation.
2019-02-22
Hu, D., Wang, L., Jiang, W., Zheng, S., Li, B..  2018.  A Novel Image Steganography Method via Deep Convolutional Generative Adversarial Networks. IEEE Access. 6:38303-38314.

The security of image steganography is an important basis for evaluating steganography algorithms. Steganography has recently made great progress in the long-term confrontation with steganalysis. To improve the security of image steganography, steganography must have the ability to resist detection by steganalysis algorithms. Traditional embedding-based steganography embeds the secret information into the content of an image, which unavoidably leaves a trace of the modification that can be detected by increasingly advanced machine-learning-based steganalysis algorithms. The concept of steganography without embedding (SWE), which does not need to modify the data of the carrier image, appeared to overcome the detection of machine-learning-based steganalysis algorithms. In this paper, we propose a novel image SWE method based on deep convolutional generative adversarial networks. We map the secret information into a noise vector and use the trained generator neural network model to generate the carrier image based on the noise vector. No modification or embedding operations are required during the process of image generation, and the information contained in the image can be extracted successfully by another neural network, called the extractor, after training. The experimental results show that this method has the advantages of highly accurate information extraction and a strong ability to resist detection by state-of-the-art image steganalysis algorithms.

Neal, T., Sundararajan, K., Woodard, D..  2018.  Exploiting Linguistic Style as a Cognitive Biometric for Continuous Verification. 2018 International Conference on Biometrics (ICB). :270-276.

This paper presents an assessment of continuous verification using linguistic style as a cognitive biometric. In stylometry, it is widely known that linguistic style is highly characteristic of authorship using representations that capture authorial style at character, lexical, syntactic, and semantic levels. In this work, we provide a contrast to previous efforts by implementing a one-class classification problem using Isolation Forests. Our approach demonstrates the usefulness of this classifier for accurately verifying the genuine user, and yields recognition accuracy exceeding 98% using very small training samples of 50 and 100-character blocks.

2019-01-21
Wu, M., Li, Y..  2018.  Adversarial mRMR against Evasion Attacks. 2018 International Joint Conference on Neural Networks (IJCNN). :1–6.

Machine learning (ML) algorithms provide a good solution for many security sensitive applications, they themselves, however, face the threats of adversary attacks. As a key problem in machine learning, how to design robust feature selection algorithms against these attacks becomes a hot issue. The current researches on defending evasion attacks mainly focus on wrapped adversarial feature selection algorithm, i.e., WAFS, which is dependent on the classification algorithms, and time cost is very high for large-scale data. Since mRMR (minimum Redundancy and Maximum Relevance) algorithm is one of the most popular filter algorithms for feature selection without considering any classifier during feature selection process. In this paper, we propose a novel adversary-aware feature selection algorithm under filter model based on mRMR, named FAFS. The algorithm, on the one hand, takes the correlation between a single feature and a label, and the redundancy between features into account; on the other hand, when selecting features, it not only considers the generalization ability in the absence of attack, but also the robustness under attack. The performance of four algorithms, i.e., mRMR, TWFS (Traditional Wrapped Feature Selection algorithm), WAFS, and FAFS is evaluated on spam filtering and PDF malicious detection in the Perfect Knowledge attack scenarios. The experiment results show that FAFS has a better performance under evasion attacks with less time complexity, and comparable classification accuracy.

Isakov, M., Bu, L., Cheng, H., Kinsy, M. A..  2018.  Preventing Neural Network Model Exfiltration in Machine Learning Hardware Accelerators. 2018 Asian Hardware Oriented Security and Trust Symposium (AsianHOST). :62–67.

Machine learning (ML) models are often trained using private datasets that are very expensive to collect, or highly sensitive, using large amounts of computing power. The models are commonly exposed either through online APIs, or used in hardware devices deployed in the field or given to the end users. This provides an incentive for adversaries to steal these ML models as a proxy for gathering datasets. While API-based model exfiltration has been studied before, the theft and protection of machine learning models on hardware devices have not been explored as of now. In this work, we examine this important aspect of the design and deployment of ML models. We illustrate how an attacker may acquire either the model or the model architecture through memory probing, side-channels, or crafted input attacks, and propose (1) power-efficient obfuscation as an alternative to encryption, and (2) timing side-channel countermeasures.

Wen, Y., Lao, Y..  2018.  PUF Modeling Attack using Active Learning. 2018 IEEE International Symposium on Circuits and Systems (ISCAS). :1–5.

Along with the rapid development of hardware security techniques, the revolutionary growth of countermeasures or attacking methods developed by intelligent and adaptive adversaries have significantly complicated the ability to create secure hardware systems. Thus, there is a critical need to (re)evaluate existing or new hardware security techniques against these state-of-the-art attacking methods. With this in mind, this paper presents a novel framework for incorporating active learning techniques into hardware security field. We demonstrate that active learning can significantly improve the learning efficiency of physical unclonable function (PUF) modeling attack, which samples the least confident and the most informative challenge-response pair (CRP) for training in each iteration. For example, our experimental results show that in order to obtain a prediction error below 4%, 2790 CRPs are required in passive learning, while only 811 CRPs are required in active learning. The sampling strategies and detailed applications of PUF modeling attack under various environmental conditions are also discussed. When the environment is very noisy, active learning may sample a large number of mislabeled CRPs and hence result in high prediction error. We present two methods to mitigate the contradiction between informative and noisy CRPs.

Kos, J., Fischer, I., Song, D..  2018.  Adversarial Examples for Generative Models. 2018 IEEE Security and Privacy Workshops (SPW). :36–42.

We explore methods of producing adversarial examples on deep generative models such as the variational autoencoder (VAE) and the VAE-GAN. Deep learning architectures are known to be vulnerable to adversarial examples, but previous work has focused on the application of adversarial examples to classification tasks. Deep generative models have recently become popular due to their ability to model input data distributions and generate realistic examples from those distributions. We present three classes of attacks on the VAE and VAE-GAN architectures and demonstrate them against networks trained on MNIST, SVHN and CelebA. Our first attack leverages classification-based adversaries by attaching a classifier to the trained encoder of the target generative model, which can then be used to indirectly manipulate the latent representation. Our second attack directly uses the VAE loss function to generate a target reconstruction image from the adversarial example. Our third attack moves beyond relying on classification or the standard loss for the gradient and directly optimizes against differences in source and target latent representations. We also motivate why an attacker might be interested in deploying such techniques against a target generative network.

Venkatesan, S., Sugrim, S., Izmailov, R., Chiang, C. J., Chadha, R., Doshi, B., Hoffman, B., Newcomb, E. Allison, Buchler, N..  2018.  On Detecting Manifestation of Adversary Characteristics. MILCOM 2018 - 2018 IEEE Military Communications Conference (MILCOM). :431–437.

Adversaries are conducting attack campaigns with increasing levels of sophistication. Additionally, with the prevalence of out-of-the-box toolkits that simplify attack operations during different stages of an attack campaign, multiple new adversaries and attack groups have appeared over the past decade. Characterizing the behavior and the modus operandi of different adversaries is critical in identifying the appropriate security maneuver to detect and mitigate the impact of an ongoing attack. To this end, in this paper, we study two characteristics of an adversary: Risk-averseness and Experience level. Risk-averse adversaries are more cautious during their campaign while fledgling adversaries do not wait to develop adequate expertise and knowledge before launching attack campaigns. One manifestation of these characteristics is through the adversary's choice and usage of attack tools. To detect these characteristics, we present multi-level machine learning (ML) models that use network data generated while under attack by different attack tools and usage patterns. In particular, for risk-averseness, we considered different configurations for scanning tools and trained the models in a testbed environment. The resulting model was used to predict the cautiousness of different red teams that participated in the Cyber Shield ‘16 exercise. The predictions matched the expected behavior of the red teams. For Experience level, we considered publicly-available remote access tools and usage patterns. We developed a Markov model to simulate usage patterns of attackers with different levels of expertise and through experiments on CyberVAN, we showed that the ML model has a high accuracy.

Ayoade, G., Chandra, S., Khan, L., Hamlen, K., Thuraisingham, B..  2018.  Automated Threat Report Classification over Multi-Source Data. 2018 IEEE 4th International Conference on Collaboration and Internet Computing (CIC). :236–245.

With an increase in targeted attacks such as advanced persistent threats (APTs), enterprise system defenders require comprehensive frameworks that allow them to collaborate and evaluate their defense systems against such attacks. MITRE has developed a framework which includes a database of different kill-chains, tactics, techniques, and procedures that attackers employ to perform these attacks. In this work, we leverage natural language processing techniques to extract attacker actions from threat report documents generated by different organizations and automatically classify them into standardized tactics and techniques, while providing relevant mitigation advisories for each attack. A naïve method to achieve this is by training a machine learning model to predict labels that associate the reports with relevant categories. In practice, however, sufficient labeled data for model training is not always readily available, so that training and test data come from different sources, resulting in bias. A naïve model would typically underperform in such a situation. We address this major challenge by incorporating an importance weighting scheme called bias correction that efficiently utilizes available labeled data, given threat reports, whose categories are to be automatically predicted. We empirically evaluated our approach on 18,257 real-world threat reports generated between year 2000 and 2018 from various computer security organizations to demonstrate its superiority by comparing its performance with an existing approach.

Madhupriya, G., Shalinie, S. M., Rajeshwari, A. R..  2018.  Detecting DDoS Attack in Cloud Computing Using Local Outlier Factors. 2018 2nd International Conference on Trends in Electronics and Informatics (ICOEI). :859–863.

Now a days, Cloud computing has brought a unbelievable change in companies, organizations, firm and institutions etc. IT industries is advantage with low investment in infrastructure and maintenance with the growth of cloud computing. The Virtualization technique is examine as the big thing in cloud computing. Even though, cloud computing has more benefits; the disadvantage of the cloud computing environment is ensuring security. Security means, the Cloud Service Provider to ensure the basic integrity, availability, privacy, confidentiality, authentication and authorization in data storage, virtual machine security etc. In this paper, we presented a Local outlier factors mechanism, which may be helpful for the detection of Distributed Denial of Service attack in a cloud computing environment. As DDoS attack becomes strong with the passing of time, and then the attack may be reduced, if it is detected at first. So we fully focused on detecting DDoS attack to secure the cloud environment. In addition, our scheme is able to identify their possible sources, giving important clues for cloud computing administrators to spot the outliers. By using WEKA (Waikato Environment for Knowledge Analysis) we have analyzed our scheme with other clustering algorithm on the basis of higher detection rates and lower false alarm rate. DR-LOF would serve as a better DDoS detection tool, which helps to improve security framework in cloud computing.

Warzyński, A., Kołaczek, G..  2018.  Intrusion detection systems vulnerability on adversarial examples. 2018 Innovations in Intelligent Systems and Applications (INISTA). :1–4.

Intrusion detection systems define an important and dynamic research area for cybersecurity. The role of Intrusion Detection System within security architecture is to improve a security level by identification of all malicious and also suspicious events that could be observed in computer or network system. One of the more specific research areas related to intrusion detection is anomaly detection. Anomaly-based intrusion detection in networks refers to the problem of finding untypical events in the observed network traffic that do not conform to the expected normal patterns. It is assumed that everything that is untypical/anomalous could be dangerous and related to some security events. To detect anomalies many security systems implements a classification or clustering algorithms. However, recent research proved that machine learning models might misclassify adversarial events, e.g. observations which were created by applying intentionally non-random perturbations to the dataset. Such weakness could increase of false negative rate which implies undetected attacks. This fact can lead to one of the most dangerous vulnerabilities of intrusion detection systems. The goal of the research performed was verification of the anomaly detection systems ability to resist this type of attack. This paper presents the preliminary results of tests taken to investigate existence of attack vector, which can use adversarial examples to conceal a real attack from being detected by intrusion detection systems.

2019-01-16
Aloui, M., Elbiaze, H., Glitho, R., Yangui, S..  2018.  Analytics as a service architecture for cloud-based CDN: Case of video popularity prediction. 2018 15th IEEE Annual Consumer Communications Networking Conference (CCNC). :1–4.
User Generated Videos (UGV) are the dominating content stored in scattered caches to meet end-user Content Delivery Networks (CDN) requests with quality of service. End-User behaviour leads to a highly variable UGV popularity. This aspect can be exploited to efficiently utilize the limited storage of the caches, and improve the hit ratio of UGVs. In this paper, we propose a new architecture for Data Analytics in Cloud-based CDN to derive UGVs popularity online. This architecture uses RESTful web services to gather CDN logs, store them through generic collections in a NoSQL database, and calculate related popular UGVs in a real time fashion. It uses a dynamic model training and prediction services to provide each CDN with related popular videos to be cached based on the latest trained model. The proposed architecture is implemented with k-means clustering prediction model and the obtained results are 99.8% accurate.
Liao, F., Liang, M., Dong, Y., Pang, T., Hu, X., Zhu, J..  2018.  Defense Against Adversarial Attacks Using High-Level Representation Guided Denoiser. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. :1778–1787.
Neural networks are vulnerable to adversarial examples, which poses a threat to their application in security sensitive systems. We propose high-level representation guided denoiser (HGD) as a defense for image classification. Standard denoiser suffers from the error amplification effect, in which small residual adversarial noise is progressively amplified and leads to wrong classifications. HGD overcomes this problem by using a loss function defined as the difference between the target model's outputs activated by the clean image and denoised image. Compared with ensemble adversarial training which is the state-of-the-art defending method on large images, HGD has three advantages. First, with HGD as a defense, the target model is more robust to either white-box or black-box adversarial attacks. Second, HGD can be trained on a small subset of the images and generalizes well to other images and unseen classes. Third, HGD can be transferred to defend models other than the one guiding it. In NIPS competition on defense against adversarial attacks, our HGD solution won the first place and outperformed other models by a large margin.1
Kreuk, F., Adi, Y., Cisse, M., Keshet, J..  2018.  Fooling End-To-End Speaker Verification With Adversarial Examples. 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). :1962–1966.
Automatic speaker verification systems are increasingly used as the primary means to authenticate costumers. Recently, it has been proposed to train speaker verification systems using end-to-end deep neural models. In this paper, we show that such systems are vulnerable to adversarial example attacks. Adversarial examples are generated by adding a peculiar noise to original speaker examples, in such a way that they are almost indistinguishable, by a human listener. Yet, the generated waveforms, which sound as speaker A can be used to fool such a system by claiming as if the waveforms were uttered by speaker B. We present white-box attacks on a deep end-to-end network that was either trained on YOHO or NTIMIT. We also present two black-box attacks. In the first one, we generate adversarial examples with a system trained on NTIMIT and perform the attack on a system that trained on YOHO. In the second one, we generate the adversarial examples with a system trained using Mel-spectrum features and perform the attack on a system trained using MFCCs. Our results show that one can significantly decrease the accuracy of a target system even when the adversarial examples are generated with different system potentially using different features.
Bai, X., Niu, W., Liu, J., Gao, X., Xiang, Y., Liu, J..  2018.  Adversarial Examples Construction Towards White-Box Q Table Variation in DQN Pathfinding Training. 2018 IEEE Third International Conference on Data Science in Cyberspace (DSC). :781–787.

As a new research hotspot in the field of artificial intelligence, deep reinforcement learning (DRL) has achieved certain success in various fields such as robot control, computer vision, natural language processing and so on. At the same time, the possibility of its application being attacked and whether it have a strong resistance to strike has also become a hot topic in recent years. Therefore, we select the representative Deep Q Network (DQN) algorithm in deep reinforcement learning, and use the robotic automatic pathfinding application as a countermeasure application scenario for the first time, and attack DQN algorithm against the vulnerability of the adversarial samples. In this paper, we first use DQN to find the optimal path, and analyze the rules of DQN pathfinding. Then, we propose a method that can effectively find vulnerable points towards White-Box Q table variation in DQN pathfinding training. Finally, we build a simulation environment as a basic experimental platform to test our method, through multiple experiments, we can successfully find the adversarial examples and the experimental results show that the supervised method we proposed is effective.

2018-12-10
Lobato, A. G. P., Lopez, M. A., Sanz, I. J., Cárdenas, A. A., Duarte, O. C. M. B., Pujolle, G..  2018.  An Adaptive Real-Time Architecture for Zero-Day Threat Detection. 2018 IEEE International Conference on Communications (ICC). :1–6.

Attackers create new threats and constantly change their behavior to mislead security systems. In this paper, we propose an adaptive threat detection architecture that trains its detection models in real time. The major contributions of the proposed architecture are: i) gather data about zero-day attacks and attacker behavior using honeypots in the network; ii) process data in real time and achieve high processing throughput through detection schemes implemented with stream processing technology; iii) use of two real datasets to evaluate our detection schemes, the first from a major network operator in Brazil and the other created in our lab; iv) design and development of adaptive detection schemes including both online trained supervised classification schemes that update their parameters in real time and learn zero-day threats from the honeypots, and online trained unsupervised anomaly detection schemes that model legitimate user behavior and adapt to changes. The performance evaluation results show that proposed architecture maintains an excellent trade-off between threat detection and false positive rates and achieves high classification accuracy of more than 90%, even with legitimate behavior changes and zero-day threats.

Schonherr, L., Zeiler, S., Kolossa, D..  2017.  Spoofing detection via simultaneous verification of audio-visual synchronicity and transcription. 2017 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU). :591–598.

Acoustic speaker recognition systems are very vulnerable to spoofing attacks via replayed or synthesized utterances. One possible countermeasure is audio-visual speaker recognition. Nevertheless, the addition of the visual stream alone does not prevent spoofing attacks completely and only provides further information to assess the authenticity of the utterance. Many systems consider audio and video modalities independently and can easily be spoofed by imitating only a single modality or by a bimodal replay attack with a victim's photograph or video. Therefore, we propose the simultaneous verification of the data synchronicity and the transcription in a challenge-response setup. We use coupled hidden Markov models (CHMMs) for a text-dependent spoofing detection and introduce new features that provide information about the transcriptions of the utterance and the synchronicity of both streams. We evaluate the features for various spoofing scenarios and show that the combination of the features leads to a more robust recognition, also in comparison to the baseline method. Additionally, by evaluating the data on unseen speakers, we show the spoofing detection to be applicable in speaker-independent use-cases.

2018-11-19
Chen, D., Liao, J., Yuan, L., Yu, N., Hua, G..  2017.  Coherent Online Video Style Transfer. 2017 IEEE International Conference on Computer Vision (ICCV). :1114–1123.

Training a feed-forward network for the fast neural style transfer of images has proven successful, but the naive extension of processing videos frame by frame is prone to producing flickering results. We propose the first end-to-end network for online video style transfer, which generates temporally coherent stylized video sequences in near realtime. Two key ideas include an efficient network by incorporating short-term coherence, and propagating short-term coherence to long-term, which ensures consistency over a longer period of time. Our network can incorporate different image stylization networks and clearly outperforms the per-frame baseline both qualitatively and quantitatively. Moreover, it can achieve visually comparable coherence to optimization-based video style transfer, but is three orders of magnitude faster.

Huang, X., Belongie, S..  2017.  Arbitrary Style Transfer in Real-Time with Adaptive Instance Normalization. 2017 IEEE International Conference on Computer Vision (ICCV). :1510–1519.

Gatys et al. recently introduced a neural algorithm that renders a content image in the style of another image, achieving so-called style transfer. However, their framework requires a slow iterative optimization process, which limits its practical application. Fast approximations with feed-forward neural networks have been proposed to speed up neural style transfer. Unfortunately, the speed improvement comes at a cost: the network is usually tied to a fixed set of styles and cannot adapt to arbitrary new styles. In this paper, we present a simple yet effective approach that for the first time enables arbitrary style transfer in real-time. At the heart of our method is a novel adaptive instance normalization (AdaIN) layer that aligns the mean and variance of the content features with those of the style features. Our method achieves speed comparable to the fastest existing approach, without the restriction to a pre-defined set of styles. In addition, our approach allows flexible user controls such as content-style trade-off, style interpolation, color & spatial controls, all using a single feed-forward neural network.

Wang, X., Oxholm, G., Zhang, D., Wang, Y..  2017.  Multimodal Transfer: A Hierarchical Deep Convolutional Neural Network for Fast Artistic Style Transfer. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). :7178–7186.

Transferring artistic styles onto everyday photographs has become an extremely popular task in both academia and industry. Recently, offline training has replaced online iterative optimization, enabling nearly real-time stylization. When those stylization networks are applied directly to high-resolution images, however, the style of localized regions often appears less similar to the desired artistic style. This is because the transfer process fails to capture small, intricate textures and maintain correct texture scales of the artworks. Here we propose a multimodal convolutional neural network that takes into consideration faithful representations of both color and luminance channels, and performs stylization hierarchically with multiple losses of increasing scales. Compared to state-of-the-art networks, our network can also perform style transfer in nearly real-time by performing much more sophisticated training offline. By properly handling style and texture cues at multiple scales using several modalities, we can transfer not just large-scale, obvious style cues but also subtle, exquisite ones. That is, our scheme can generate results that are visually pleasing and more similar to multiple desired artistic styles with color and texture cues at multiple scales.

Huang, H., Wang, H., Luo, W., Ma, L., Jiang, W., Zhu, X., Li, Z., Liu, W..  2017.  Real-Time Neural Style Transfer for Videos. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). :7044–7052.

Recent research endeavors have shown the potential of using feed-forward convolutional neural networks to accomplish fast style transfer for images. In this work, we take one step further to explore the possibility of exploiting a feed-forward network to perform style transfer for videos and simultaneously maintain temporal consistency among stylized video frames. Our feed-forward network is trained by enforcing the outputs of consecutive frames to be both well stylized and temporally consistent. More specifically, a hybrid loss is proposed to capitalize on the content information of input frames, the style information of a given style image, and the temporal information of consecutive frames. To calculate the temporal loss during the training stage, a novel two-frame synergic training mechanism is proposed. Compared with directly applying an existing image style transfer method to videos, our proposed method employs the trained network to yield temporally consistent stylized videos which are much more visually pleasant. In contrast to the prior video style transfer method which relies on time-consuming optimization on the fly, our method runs in real time while generating competitive visual results.

2018-11-14
Xi, Z., Chen, L., Chen, M., Dai, Z., Li, Y..  2018.  Power Mobile Terminal Security Assessment Based on Weights Self-Learning. 2018 10th International Conference on Communication Software and Networks (ICCSN). :502–505.

At present, mobile terminals are widely used in power system and easy to be the target or springboard to attack the power system. It is necessary to have security assessment of power mobile terminal system to enable early warning of potential risks. In the context, this paper builds the security assessment system against to power mobile terminals, with features from security assessment system of general mobile terminals and power application scenarios. Compared with the existing methods, this paper introduces machine learning to the Rank Correlation Analysis method, which relies on expert experience, and uses objective experimental data to optimize the weight parameters of the indicators. From experiments, this paper proves that weights self-learning method can be used to evaluate the security of power mobile terminal system and improve credibility of the result.

Teive, R. C. G., Neto, E. A. C. A., Mussoi, F. L. R., Rese, A. L. R., Coelho, J., Andrade, F. F., Cardoso, F. L., Nogueira, F., Parreira, J. P..  2017.  Intelligent System for Automatic Performance Evaluation of Distribution System Operators. 2017 19th International Conference on Intelligent System Application to Power Systems (ISAP). :1–6.
The performance evaluation of distribution network operators is essential for the electrical utilities to know how prepared the operators are to execute their operation standards and rules, searching for minimizing the time of power outage, after some contingency. The performance of operators can be evaluated by the impact of their actions on several technical and economic indicators of the distribution system. This issue is a complex problem, whose solution involves necessarily some expertise and a multi-criteria evaluation. This paper presents a Tutorial Expert System (TES) for performance evaluation of electrical distribution network operators after a given contingency in the electrical network. The proposed TES guides the evaluation process, taking into account technical, economic and personal criteria, aiding the quantification of these criteria. A case study based on real data demonstrates the applicability of the performance evaluation procedure of distribution network operators.