Biblio
This paper provides hardware-independent authentication named as Intelligent Authentication Scheme, which rectifies the design weaknesses that may be exploited by various security attacks. The Intelligent Authentication Scheme protects against various types of security attacks such as password-guessing attack, replay attack, streaming bots attack (denial of service), keylogger, screenlogger and phishing attack. Besides reducing the overall cost, it also balances both security and usability. It is a unique authentication scheme.
Modern computer peripherals are diverse in their capabilities and functionality, ranging from keyboards and printers to smartphones and external GPUs. In recent years, peripherals increasingly connect over a small number of standardized communication protocols, including USB, Bluetooth, and NFC. The host operating system is responsible for managing these devices; however, malicious peripherals can request additional functionality from the OS resulting in system compromise, or can craft data packets to exploit vulnerabilities within OS software stacks. Defenses against malicious peripherals to date only partially cover the peripheral attack surface and are limited to specific protocols (e.g., USB). In this paper, we propose Linux (e)BPF Modules (LBM), a general security framework that provides a unified API for enforcing protection against malicious peripherals within the Linux kernel. LBM leverages the eBPF packet filtering mechanism for performance and extensibility and we provide a high-level language to facilitate the development of powerful filtering functionality. We demonstrate how LBM can provide host protection against malicious USB, Bluetooth, and NFC devices; we also instantiate and unify existing defenses under the LBM framework. Our evaluation shows that the overhead introduced by LBM is within 1 μs per packet in most cases, application and system overhead is negligible, and LBM outperforms other state-of-the-art solutions. To our knowledge, LBM is the first security framework designed to provide comprehensive protection against malicious peripherals within the Linux kernel.
Deep machine learning techniques have shown promising results in network traffic classification, however, the robustness of these techniques under adversarial threats is still in question. Deep machine learning models are found vulnerable to small carefully crafted adversarial perturbations posing a major question on the performance of deep machine learning techniques. In this paper, we propose a black-box adversarial attack on network traffic classification. The proposed attack successfully evades deep machine learning-based classifiers which highlights the potential security threat of using deep machine learning techniques to realize autonomous networks.
Living in the age of digital transformation, companies and individuals are moving to public and private clouds to store and retrieve information, hence the need to store and retrieve data is exponentially increasing. Existing storage technologies such as DAS are facing a big challenge to deal with these huge amount of data. Hence, newer technologies should be adopted. Storage Area Network (SAN) is a distributed storage technology that aggregates data from several private nodes into a centralized secure place. Looking at SAN from a security perspective, clearly physical security over multiple geographical remote locations is not adequate to ensure a full security solution. A SAN security framework needs to be developed and designed. This work investigates how SAN protocols work (FC, ISCSI, FCOE). It also investigates about other storages technologies such as Network Attached Storage (NAS) and Direct Attached Storage (DAS) including different metrics such as: IOPS (input output per second), Throughput, Bandwidths, latency, cashing technologies. This research work is focusing on the security vulnerabilities in SAN listing different attacks in SAN protocols and compare it to other such as NAS and DAS. Another aspect of this work is to highlight performance factors in SAN in order to find a way to improve the performance focusing security solutions aimed to enhance the security level in SAN.
Software Defined Networking (SDN) provides new functionalities to efficiently manage the network traffic, which can be used to enhance the networking capabilities to support the growing communication demands today. But at the same time, it introduces new attack vectors that can be exploited by attackers. Hence, evaluating and selecting countermeasures to optimize the security of the SDN is of paramount importance. However, one should also take into account the trade-off between security and performance of the SDN. In this paper, we present a security optimization approach for the SDN taking into account the trade-off between security and performance. We evaluate the security of the SDN using graphical security models and metrics, and use queuing models to measure the performance of the SDN. Further, we use Genetic Algorithms, namely NSGA-II, to optimally select the countermeasure with performance and security constraints. Our experimental analysis results show that the proposed approach can efficiently compute the countermeasures that will optimize the security of the SDN while satisfying the performance constraints.
An improved algorithm of the Analytic Hierarchy Process (AHP) is proposed in this paper, which is realized by constructing an improved judgment matrix. Specifically, rough set theory is used in the algorithm to calculate the weight of the network metric data, and then the improved AHP algorithm nine-point systemic is structured, finally, an improved AHP judgment matrix is constructed. By performing an AHP operation on the improved judgment matrix, the weight of the improved network metric data can be obtained. If only the rough set theory is applied to process the network index data, the objective factors would dominate the whole process. If the improved algorithm of AHP is used to integrate the expert score into the process of measurement, then the combination of subjective factors and objective factors can be realized. Based on the aforementioned theory, a new network attack metrics system is proposed in this paper, which uses a metric structure based on "attack type-attack attribute-attack atomic operation-attack metrics", in which the metric process of attack attribute adopts AHP. The metrics of the system are comprehensive, given their judgment of frequent attacks is universal. The experiment was verified by an experiment of a common attack Smurf. The experimental results show the effectiveness and applicability of the proposed measurement system.
Severe class imbalance between the majority and minority classes in large datasets can prejudice Machine Learning classifiers toward the majority class. Our work uniquely consolidates two case studies, each utilizing three learners implemented within an Apache Spark framework, six sampling methods, and five sampling distribution ratios to analyze the effect of severe class imbalance on big data analytics. We use three performance metrics to evaluate this study: Area Under the Receiver Operating Characteristic Curve, Area Under the Precision-Recall Curve, and Geometric Mean. In the first case study, models were trained on one dataset (POST) and tested on another (SlowlorisBig). In the second case study, the training and testing dataset roles were switched. Our comparison of performance metrics shows that Area Under the Precision-Recall Curve and Geometric Mean are sensitive to changes in the sampling distribution ratio, whereas Area Under the Receiver Operating Characteristic Curve is relatively unaffected. In addition, we demonstrate that when comparing sampling methods, borderline-SMOTE2 outperforms the other methods in the first case study, and Random Undersampling is the top performer in the second case study.
Continuous and adaptive learning is an effective learning approach when dealing with highly dynamic and changing scenarios, where concept drift often happens. In a continuous, stream or adaptive learning setup, new measurements arrive continuously and there are no boundaries for learning, meaning that the learning model has to decide how and when to (re)learn from these new data constantly. We address the problem of adaptive and continual learning for network security, building dynamic models to detect network attacks in real network traffic. The combination of fast and big network measurements data with the re-training paradigm of adaptive learning imposes complex challenges in terms of data processing speed, which we tackle by relying on big data platforms for parallel stream processing. We build and benchmark different adaptive learning models on top of a novel big data analytics platform for network traffic monitoring and analysis tasks, and show that high speed-up computations (as high as × 6) can be achieved by parallelizing off-the-shelf stream learning approaches.
In the open network environment, the network offensive information is implanted in big data environment, so it is necessary to carry out accurate location marking of network offensive information, to realize network attack detection, and to implement the process of accurate location marking of network offensive information. Combined with big data analysis method, the location of network attack nodes is realized, but when network attacks cross in series, the performance of attack information tagging is not good. An accurate marking technique for network attack information is proposed based on big data fusion tracking recognition. The adaptive learning model combined with big data is used to mark and sample the network attack information, and the feature analysis model of attack information chain is designed by extracting the association rules. This paper classifies the data types of the network attack nodes, and improves the network attack detection ability by the task scheduling method of the network attack information nodes, and realizes the accurate marking of the network attacking information. Simulation results show that the proposed algorithm can effectively improve the accuracy of marking offensive information in open network environment, the efficiency of attack detection and the ability of intrusion prevention is improved, and it has good application value in the field of network security defense.
A cyber attack is a malicious and deliberate attempt by an individual or organization to breach the integrity, confidentiality, and/or availability of data or services of an information system of another individual or organization. Being able to attribute a cyber attack is a crucial question for security but this question is also known to be a difficult problem. The main reason why there is currently no solution that automatically identifies the initiator of an attack is that attackers usually use proxies, i.e. an intermediate node that relays a host over the network. In this paper, we propose to formalize the problem of identifying the initiator of a cyber attack. We show that if the attack scenario used by the attacker is known, then we are able to resolve the cyber attribution problem. Indeed, we propose a model to formalize these attack scenarios, that we call attack patterns, and give an efficient algorithm to search for attack pattern on a communication history. Finally, we experimentally show the relevance of our approach.
The evolution of smart automobiles and vehicles within the Internet of Things (IoT) - particularly as that evolution leads toward a proliferation of completely autonomous vehicles - has sparked considerable interest in the subject of vehicle/automotive security. While the attack surface is wide, there are patterns of exploitable vulnerabilities. In this study we reviewed, classified according to their attack surface and evaluated some of the common vehicle and infrastructure attack vectors identified in the literature. To remediate these attack vectors, specific technical recommendations have been provided as a way towards secure deployments of smart automobiles and transportation infrastructures.
The quantity of Internet of Things (IoT) devices in the marketplace and lack of security is staggering. The interconnectedness of IoT devices has increased the attack surface for hackers. "White Worm" technology has the potential to combat infiltrating malware. Before white worm technology becomes viable, its capabilities must be constrained to specific devices and limited to non-harmful actions. This paper addresses the current problem, international research, and the conflicting interest of individuals, businesses, and governments regarding white worm technology. Proposed is a new perspective on utilizing white worm technology to protect the vulnerability of IoT devices, while overcoming its challenges.