Visible to the public Biblio

Filters: Keyword is Charge coupled devices  [Clear All Filters]
2020-12-21
Wang, H., Zeng, X., Lei, Y., Ren, S., Hou, F., Dong, N..  2020.  Indoor Object Identification based on Spectral Subtraction of Acoustic Room Impulse Response. 2020 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC). :1–4.
Object identification in the room environment is a key technique in many advanced engineering applications such as the unidentified object recognition in security surveillance, human identification and barrier recognition for AI robots. The identification technique based on the sound field perturbation analysis is capable of giving immersive identification which avoids the occlusion problem in the traditional vision-based method. In this paper, a new insight into the relation between the object and the variation of the sound field is presented. The sound field difference before and after the object locates in the environment is analyzed using the spectral subtraction based on the room impulse response. The spectral subtraction shows that the energy loss caused by the sound absorption is the essential factor which perturbs the sound field. By using the energy loss with high uniqueness as the extracted feature, an object identification technique is constructed under the classical supervised pattern recognition framework. The experiment in a real room validates that the system has high identification accuracy. In addition, based on the feature property of position insensitivity, this technique can achieve high identifying accuracy with a quite small training data set, which demonstrates that the technique has potential to be used in real engineering applications.
2020-11-20
Lavrenovs, A., Melón, F. J. R..  2018.  HTTP security headers analysis of top one million websites. 2018 10th International Conference on Cyber Conflict (CyCon). :345—370.
We present research on the security of the most popular websites, ranked according to Alexa's top one million list, based on an HTTP response headers analysis. For each of the domains included in the list, we made four different requests: an HTTP/1.1 request to the domain itself and to its "www" subdomain and two more equivalent HTTPS requests. Redirections were always followed. A detailed discussion of the request process and main outcomes is presented, including X.509 certificate issues and comparison of results with equivalent HTTP/2 requests. The body of the responses was discarded, and the HTTP response header fields were stored in a database. We analysed the prevalence of the most important response headers related to web security aspects. In particular, we took into account Strict- Transport-Security, Content-Security-Policy, X-XSS-Protection, X-Frame-Options, Set-Cookie (for session cookies) and X-Content-Type. We also reviewed the contents of response HTTP headers that potentially could reveal unwanted information, like Server (and related headers), Date and Referrer-Policy. This research offers an up-to-date survey of current prevalence of web security policies implemented through HTTP response headers and concludes that most popular sites tend to implement it noticeably more often than less popular ones. Equally, HTTPS sites seem to be far more eager to implement those policies than HTTP only websites. A comparison with previous works show that web security policies based on HTTP response headers are continuously growing, but still far from satisfactory widespread adoption.
2015-05-05
Kornmaier, A., Jaouen, F..  2014.  Beyond technical data - a more comprehensive situational awareness fed by available intelligence information. Cyber Conflict (CyCon 2014), 2014 6th International Conference On. :139-154.

Information on cyber incidents and threats are currently collected and processed with a strong technical focus. Threat and vulnerability information alone are not a solid base for effective, affordable or actionable security advice for decision makers. They need more than a small technical cut of a bigger situational picture to combat and not only to mitigate the cyber threat. We first give a short overview over the related work that can be found in the literature. We found that the approaches mostly analysed “what” has been done, instead of looking more generically beyond the technical aspects for the tactics, techniques and procedures to identify the “how” it was done, by whom and why. We examine then, what information categories and data already exist to answer the question for an adversary's capabilities and objectives. As traditional intelligence tries to serve a better understanding of adversaries' capabilities, actions, and intent, the same is feasible in the cyber space with cyber intelligence. Thus, we identify information sources in the military and civil environment, before we propose to link that traditional information with the technical data for a better situational picture. We give examples of information that can be collected from traditional intelligence for correlation with technical data. Thus, the same intelligence operational picture for the cyber sphere could be developed like the one that is traditionally fed from conventional intelligence disciplines. Finally we propose a way of including intelligence processing in cyber analysis. We finally outline requirements that are key for a successful exchange of information and intelligence between military/civil information providers.