Biblio
Filters: Keyword is human in the loop [Clear All Filters]
SpyCon: Adaptation Based Spyware in Human-in-the-Loop IoT. 2019 IEEE Security and Privacy Workshops (SPW). :163–168.
.
2019. Personalized IoT adapt their behavior based on contextual information, such as user behavior and location. Unfortunately, the fact that personalized IoT adapt to user context opens a side-channel that leaks private information about the user. To that end, we start by studying the extent to which a malicious eavesdropper can monitor the actions taken by an IoT system and extract user's private information. In particular, we show two concrete instantiations (in the context of mobile phones and smart homes) of a new category of spyware which we refer to as Context-Aware Adaptation Based Spyware (SpyCon). Experimental evaluations show that the developed SpyCon can predict users' daily behavior with an accuracy of 90.3%. Being a new spyware with no known prior signature or behavior, traditional spyware detection that is based on code signature or system behavior are not adequate to detect SpyCon. We discuss possible detection and mitigation mechanisms that can hinder the effect of SpyCon.
Why consider the human-in-the-loop in automated cyber-physical production systems? Two cases from cross-company cooperation 2019 IEEE 17th International Conference on Industrial Informatics (INDIN). 1:861–866.
.
2019. Industry 4.0 and the Internet of Production can increase efficiency and effectiveness of workflows in manufacturing companies and production networks. Despite ubiquitous automation, people are essential in socio-technical cyber-physical production systems due to unique cognitive capabilities, as final arbitrators, or for ethical and legal reasons. However, the design of interfaces between the human-in-the-loop and production systems poses challenges not yet been sufficiently elaborated in research and practice. We present two behavioural studies in the context of inter-company collaboration that show why considering the human-in-the-loop is crucial: The first study shows that information complexity and individual differences shape the overall decision quality. With increasing information complexity, the decision speed decreases and the decision accuracy descends. Consequently, a fine balance between necessary, abundant, and superfluous information must be found. The second experiment studies human decision making in complex environments using a business simulation. We found that correct decision aids can augment the human-in-the-loop's decision making and that these can increase usability, trust, and proft. Yet, incorrect decision support has the opposite effect. Guidelines for designing socio-technical cyber-physical production systems and a research agenda conclude this article.
Toward Human-in-the-Loop Prohibited Item Detection in X-ray Baggage Images. 2019 Chinese Automation Congress (CAC). :4360–4364.
.
2019. X-ray baggage security screening is a demanding task for aviation and rail transit security; automatic prohibited item detection in X-ray baggage images can help reduce the work of inspectors. However, as many items are placed too close to each other in the baggages, it is difficult to fully trust the detection results of intelligent prohibited item detection algorithms. In this paper, a human-in-the-loop baggage inspection framework is proposed. The proposed framework utilizes the deep-learning-based algorithm for prohibited item detection to find suspicious items in X-ray baggage images, and select manual examination when the detection algorithm cannot determine whether the baggage is dangerous or safe. The advantages of proposed inspection process include: online to capture new sample images for training incrementally prohibited item detection model, and augmented prohibited item detection intelligence with human-computer collaboration. The preliminary experimental results show, human-in-the-loop process by combining cognitive capabilities of human inspector with the intelligent algorithms capabilities, can greatly improve the efficiency of in-baggage security screening.