Visible to the public Biblio

Filters: Keyword is human in the loop  [Clear All Filters]
2023-03-06
Mainampati, Manasa, Chandrasekaran, Balasubramaniyan.  2021.  Implementation of Human in The Loop on the TurtleBot using Reinforced Learning methods and Robot Operating System (ROS). 2021 IEEE 12th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON). :0448–0452.
In this paper, an implementation of a human in the loop (HITL) technique for robot navigation in an indoor environment is described. The HITL technique is integrated into the reinforcement learning algorithms for mobile robot navigation. Reinforcement algorithms, specifically Q-learning and SARSA, are used combined with HITL since these algorithms are good in exploration and navigation. Turtlebot3 has been used as the robot for validating the algorithms by implementing the system using Robot Operating System and Gazebo. The robot-assisted with human feedback was found to be better in navigation task execution when compared to standard algorithms without using human in the loop. This is a work in progress and the next step of this research is exploring other reinforced learning methods and implementing them on a physical robot.
ISSN: 2644-3163
2022-06-10
Ge, Yurun, Bertozzi, Andrea L..  2021.  Active Learning for the Subgraph Matching Problem. 2021 IEEE International Conference on Big Data (Big Data). :2641–2649.
The subgraph matching problem arises in a number of modern machine learning applications including segmented images and meshes of 3D objects for pattern recognition, bio-chemical reactions and security applications. This graph-based problem can have a very large and complex solution space especially when the world graph has many more nodes and edges than the template. In a real use-case scenario, analysts may need to query additional information about template nodes or world nodes to reduce the problem size and the solution space. Currently, this query process is done by hand, based on the personal experience of analysts. By analogy to the well-known active learning problem in machine learning classification problems, we present a machine-based active learning problem for the subgraph match problem in which the machine suggests optimal template target nodes that would be most likely to reduce the solution space when it is otherwise overly large and complex. The humans in the loop can then include additional information about those target nodes. We present some case studies for both synthetic and real world datasets for multichannel subgraph matching.
Poon, Lex, Farshidi, Siamak, Li, Na, Zhao, Zhiming.  2021.  Unsupervised Anomaly Detection in Data Quality Control. 2021 IEEE International Conference on Big Data (Big Data). :2327–2336.
Data is one of the most valuable assets of an organization and has a tremendous impact on its long-term success and decision-making processes. Typically, organizational data error and outlier detection processes perform manually and reactively, making them time-consuming and prone to human errors. Additionally, rich data types, unlabeled data, and increased volume have made such data more complex. Accordingly, an automated anomaly detection approach is required to improve data management and quality control processes. This study introduces an unsupervised anomaly detection approach based on models comparison, consensus learning, and a combination of rules of thumb with iterative hyper-parameter tuning to increase data quality. Furthermore, a domain expert is considered a human in the loop to evaluate and check the data quality and to judge the output of the unsupervised model. An experiment has been conducted to assess the proposed approach in the context of a case study. The experiment results confirm that the proposed approach can improve the quality of organizational data and facilitate anomaly detection processes.
Ramachandran, Gowri Sankar, Deane, Felicity, Malik, Sidra, Dorri, Ali, Jurdak, Raja.  2021.  Towards Assisted Autonomy for Supply Chain Compliance Management. 2021 Third IEEE International Conference on Trust, Privacy and Security in Intelligent Systems and Applications (TPS-ISA). :321–330.

In an agricultural supply chain, farmers, food processors, transportation agencies, importers, and exporters must comply with different regulations imposed by one or more jurisdictions depending on the nature of their business operations. Supply chain stakeholders conventionally transport their goods, along with the corresponding documentation via regulators for compliance checks. This is generally followed by a tedious and manual process to ensure the goods meet regulatory requirements. However, supply chain systems are changing through digitization. In digitized supply chains, data is shared with the relevant stakeholders through digital supply chain platforms, including blockchain technology. In such datadriven digital supply chains, the regulators may be able to leverage digital technologies, such as artificial intelligence and machine learning, to automate the compliance verification process. However, a barrier to progress is the risk that information will not be credible, thus reversing the gains that automation could achieve. Automating compliance based on inaccurate data may compromise the safety and credibility of the agricultural supply chain, which discourages regulators and other stakeholders from adopting and relying on automation. Within this article we consider the challenges of digital supply chains when we describe parts of the compliance management process and how it can be automated to improve the operational efficiency of agricultural supply chains. We introduce assisted autonomy as a means to pragmatically automate the compliance verification process by combining the power of digital systems while keeping the human in-the-loop. We argue that autonomous compliance is possible, but that the need for human led inspection processes will never be replaced by machines, however it can be minimised through “assisted autonomy”.

Bures, Tomas, Gerostathopoulos, Ilias, Hnětynka, Petr, Seifermann, Stephan, Walter, Maximilian, Heinrich, Robert.  2021.  Aspect-Oriented Adaptation of Access Control Rules. 2021 47th Euromicro Conference on Software Engineering and Advanced Applications (SEAA). :363–370.
Cyber-physical systems (CPS) and IoT systems are nowadays commonly designed as self-adaptive, endowing them with the ability to dynamically reconFigure to reflect their changing environment. This adaptation concerns also the security, as one of the most important properties of these systems. Though the state of the art on adaptivity in terms of security related to these systems can often deal well with fully anticipated situations in the environment, it becomes a challenge to deal with situations that are not or only partially anticipated. This uncertainty is however omnipresent in these systems due to humans in the loop, open-endedness and only partial understanding of the processes happening in the environment. In this paper, we partially address this challenge by featuring an approach for tackling access control in face of partially unanticipated situations. We base our solution on special kind of aspects that build on existing access control system and create a second level of adaptation that addresses the partially unanticipated situations by modifying access control rules. The approach is based on our previous work where we have analyzed and classified uncertainty in security and trust in such systems and have outlined the idea of access-control related situational patterns. The aspects that we present in this paper serve as means for application-specific specialization of the situational patterns. We showcase our approach on a simplified but real-life example in the domain of Industry 4.0 that comes from one of our industrial projects.
Yang, Jing, Vega-Oliveros, Didier, Seibt, Tais, Rocha, Anderson.  2021.  Scalable Fact-checking with Human-in-the-Loop. 2021 IEEE International Workshop on Information Forensics and Security (WIFS). :1–6.
Researchers have been investigating automated solutions for fact-checking in various fronts. However, current approaches often overlook the fact that information released every day is escalating, and a large amount of them overlap. Intending to accelerate fact-checking, we bridge this gap by proposing a new pipeline – grouping similar messages and summarizing them into aggregated claims. Specifically, we first clean a set of social media posts (e.g., tweets) and build a graph of all posts based on their semantics; Then, we perform two clustering methods to group the messages for further claim summarization. We evaluate the summaries both quantitatively with ROUGE scores and qualitatively with human evaluation. We also generate a graph of summaries to verify that there is no significant overlap among them. The results reduced 28,818 original messages to 700 summary claims, showing the potential to speed up the fact-checking process by organizing and selecting representative claims from massive disorganized and redundant messages.
Kropp, Alexander, Schwalbe, Mario, Tsokalo, Ievgenii A., Süβkraut, Martin, Schmoll, Robert-Steve, Fitzek, Frank H.P..  2021.  Reliable Control for Robotics - Hardware Resilience Powered by Software. 2021 IEEE 18th Annual Consumer Communications Networking Conference (CCNC). :1–2.
Industry 4.0 is now much more than just a buzzword. However, with the advancement of automation through digitization and softwarization of dedicated hardware, applications are also becoming more susceptible to random hardware errors in the calculation. This cyber-physical demonstrator uses a robotic application to show the effects that even single bit flips can have in the real world due to hardware errors. Using the graphical user interface including the human machine interface, the audience can generate hardware errors in the form of bit flips and see their effects live on the robot. In this paper we will be showing a new technology, the SIListra Safety Transformer (SST), that makes it possible to detect those kind of random hardware errors, which can subsequently make safety-critical applications more reliable.
Fitzek, Frank H.P., Li, Shu-Chen, Speidel, Stefanie, Strufe, Thorsten, Seeling, Patrick.  2021.  Frontiers of Transdisciplinary Research in Tactile Internet with Human-in-the-Loop. 2021 17th International Symposium on Wireless Communication Systems (ISWCS). :1–6.
Recent technological advances in developing intelligent telecommunication networks, ultra-compact bendable wireless transceiver chips, adaptive wearable sensors and actuators, and secure computing infrastructures along with the progress made in psychology and neuroscience for understanding neu-rocognitive and computational principles of human behavior combined have paved the way for a new field of research: Tactile Internet with Human-in-the-Loop (TaHiL). This emerging field of transdisciplinary research aims to promote next generation digitalized human-machine interactions in perceived real time. To achieve this goal, mechanisms and principles of human goal-directed multisensory perception and action need to be integrated into technological designs for breakthrough innovations in mobile telecommunication, electronics and materials engineering, as well as computing. This overview highlights key challenges and the frontiers of research in the new field of TaHiL. Revolutionizing the current Internet as a digital infrastructure for sharing visual and auditory information globally, the TaHiL research will enable humans to share tactile and haptic information and thus veridically immerse themselves into virtual, remote, or inaccessible real environments to exchange skills and expertise with other humans or machines for applications in medicine, industry, and the Internet of Skills.
Nguyen, Tien N., Choo, Raymond.  2021.  Human-in-the-Loop XAI-enabled Vulnerability Detection, Investigation, and Mitigation. 2021 36th IEEE/ACM International Conference on Automated Software Engineering (ASE). :1210–1212.
The need for cyber resilience is increasingly important in our technology-dependent society, where computing systems, devices and data will continue to be the target of cyber attackers. Hence, we propose a conceptual framework called ‘Human-in-the-Loop Explainable-AI-Enabled Vulnerability Detection, Investigation, and Mitigation’ (HXAI-VDIM). Specifically, instead of resolving complex scenario of security vulnerabilities as an output of an AI/ML model, we integrate the security analyst or forensic investigator into the man-machine loop and leverage explainable AI (XAI) to combine both AI and Intelligence Assistant (IA) to amplify human intelligence in both proactive and reactive processes. Our goal is that HXAI-VDIM integrates human and machine in an interactive and iterative loop with security visualization that utilizes human intelligence to guide the XAI-enabled system and generate refined solutions.
2022-06-06
Papallas, Rafael, Dogar, Mehmet R..  2020.  Non-Prehensile Manipulation in Clutter with Human-In-The-Loop. 2020 IEEE International Conference on Robotics and Automation (ICRA). :6723–6729.
We propose a human-operator guided planning approach to pushing-based manipulation in clutter. Most recent approaches to manipulation in clutter employs randomized planning. The problem, however, remains a challenging one where the planning times are still in the order of tens of seconds or minutes, and the success rates are low for difficult instances of the problem. We build on these control-based randomized planning approaches, but we investigate using them in conjunction with human-operator input. In our framework, the human operator supplies a high-level plan, in the form of an ordered sequence of objects and their approximate goal positions. We present experiments in simulation and on a real robotic setup, where we compare the success rate and planning times of our human-in-the-loop approach with fully autonomous sampling-based planners. We show that with a minimal amount of human input, the low-level planner can solve the problem faster and with higher success rates.
Madono, Koki, Nakano, Teppei, Kobayashi, Tetsunori, Ogawa, Tetsuji.  2020.  Efficient Human-In-The-Loop Object Detection using Bi-Directional Deep SORT and Annotation-Free Segment Identification. 2020 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC). :1226–1233.
The present study proposes a method for detecting objects with a high recall rate for human-supported video annotation. In recent years, automatic annotation techniques such as object detection and tracking have become more powerful; however, detection and tracking of occluded objects, small objects, and blurred objects are still difficult. In order to annotate such objects, manual annotation is inevitably required. For this reason, we envision a human-supported video annotation framework in which over-detected objects (i.e., false positives) are allowed to minimize oversight (i.e., false negatives) in automatic annotation and then the over-detected objects are removed manually. This study attempts to achieve human-in-the-loop object detection with an emphasis on suppressing the oversight for the former stage of processing in the aforementioned annotation framework: bi-directional deep SORT is proposed to reliably capture missed objects and annotation-free segment identification (AFSID) is proposed to identify video frames in which manual annotation is not required. These methods are reinforced each other, yielding an increase in the detection rate while reducing the burden of human intervention. Experimental comparisons using a pedestrian video dataset demonstrated that bi-directional deep SORT with AFSID was successful in capturing object candidates with a higher recall rate over the existing deep SORT while reducing the cost of manpower compared to manual annotation at regular intervals.
Jobst, Matthias, Liu, Chen, Partzsch, Johannes, Yan, Yexin, Kappel, David, Gonzalez, Hector A., Ji, Yue, Vogginger, Bernhard, Mayr, Christian.  2020.  Event-based Neural Network for ECG Classification with Delta Encoding and Early Stopping. 2020 6th International Conference on Event-Based Control, Communication, and Signal Processing (EBCCSP). :1–4.
We present a scalable architecture based on a trained filter bank for input pre-processing and a recurrent neural network (RNN) for the detection of atrial fibrillation in electrocardiogram (ECG) signals, with the focus on enabling a very efficient hardware implementation as application-specific integrated circuit (ASIC). Our already very efficient base architecture is further improved by replacing the RNN with a delta-encoded gated recurrent unit (GRU) and adding a confidence measure (CM) for terminating the computation as early as possible. With these optimizations, we demonstrate a reduction of the processing load of 58 % on an internal dataset while still achieving near state-of-the-art classification results on the Physionet ECG dataset with only 1202 parameters.
Nguyen, Vu, Cabrera, Juan A., Pandi, Sreekrishna, Nguyen, Giang T., Fitzek, Frank H. P..  2020.  Exploring the Benefits of Memory-Limited Fulcrum Recoding for Heterogeneous Nodes. GLOBECOM 2020 - 2020 IEEE Global Communications Conference. :1–6.
Fulcrum decoders can trade off between computational complexity and the number of received packets. This allows heterogeneous nodes to decode at different level of complexity in accordance with their computing power. Variations of Fulcrum codes, like dynamic sparsity and expansion packets (DSEP) have significantly reduced the encoders and decoders' complexity by using dynamic sparsity and expansion packets. However, limited effort had been done for recoders of Fulcrum codes and their variations, limiting their full potential when being deployed at multi-hop networks. In this paper, we investigate the drawback of the conventional Fulcrum recoding and introduce a novel recoding scheme for the family of Fulcrum codes by limiting the buffer size, and thus memory needs. Our evaluations indicate that DSEP recoding mechamism increases the recoding goodput by 50%, and reduces the decoding overhead by 60%-90% while maintaining high decoding goodput at receivers and small memory usage at recoders compared with the conventional Fulcrum recoding. This further reduces the resources needed for Fulcrum codes at the recoders.
Corraro, Gianluca, Bove, Ezio, Canzolino, Pasquale, Cicala, Marco, Ciniglio, Umberto, Corraro, Federico, Di Capua, Gianluigi, Filippone, Edoardo, Garbarino, Luca, Genito, Nicola et al..  2020.  Real-Time HW and Human-in-the-Loop Simulations for the Validation of Detect and Avoid Advanced Functionalities in ATM Future Scenarios. 2020 AIAA/IEEE 39th Digital Avionics Systems Conference (DASC). :1–10.
The full integration of Remotely Piloted Aircraft Systems (RPAS) in non-segregated airspace is one of the major objectives for the worldwide aviation organizations and authorities. However, there are several technological and regulatory issues due to the increase of the air traffic in the next years and to the need of keeping high safety levels. In this framework, a real-time validation environment capable to simulate complex scenarios related to future air traffic management (ATM) conditions is of paramount importance. These facilities allow detailed testing and tuning of new technologies and procedures before executing flight tests. With such motivations, the Italian Aerospace Research Centre has developed the Integrated Simulation Facility (ISF) able to accurately reproduce ATM complex scenarios in real-time with hardware and human in-the-loop simulations, aiming to validate new ATM procedures and innovative system prototypes for RPAS and General Aviation aircraft. In the present work, the ISF facility has been used for reproducing relevant ATM scenarios to validate the functionalities of a Detect and Avoid system (DAA). The results of the ISF test campaign demonstrate the effectiveness of the developed algorithm in the autonomous resolution of mid-air collisions in presence of both air traffic and fixed obstacles (i.e. bad weather areas, no-fly-zone and terrain) and during critical flight phases, thus exceeding the current DAA state-of-the-art.
Matsushita, Haruka, Sato, Kaito, Sakura, Mamoru, Sawada, Kenji, Shin, Seiichi, Inoue, Masaki.  2020.  Rear-wheel steering control reflecting driver personality via Human-In-The-Loop System. 2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC). :356–362.
One of the typical autonomous driving systems is a human-machine cooperative system that intervenes in the driver operation. The autonomous driving needs to make consideration of the driver individuality in addition to safety. This paper considers a human-machine cooperative system balancing safety with the driver individuality using the Human-In-The-Loop System (HITLS) for rear-wheel steering control. This paper assumes that it is safe for HITLS to follow the target side-slip angle and target angular velocity without conflicts between the controller and driver operations. We propose HITLS using the primal-dual algorithm and the internal model control (IMC) type I-PD controller. In HITLS, the signal expander delimits the human-selectable operating range and the controller cooperates stably the human operation and automated control in that range. The primal-dual algorithm realizes the driver and the signal expander. Our outcomes are the making of the rear-wheel steering system which converges to the target value while reflecting the driver individuality.
Shimamoto, Shogo, Kobayashi, Koichi, Yamashita, Yuh.  2020.  Stochastic Model Predictive Control of Energy Management Systems with Human in the Loop. 2020 IEEE 9th Global Conference on Consumer Electronics (GCCE). :60–61.
In this paper, we propose a method of stochastic model predictive control for energy management systems including human-in-the-loop. Here, we consider an air-conditioning system consisting of some rooms. Human decision making about the set temperature is modeled by a discrete-time Markov chain. The finite-time optimal control problem solved in the controller is reduced to a mixed integer linear programming problem.
Uchida, Hikaru, Matsubara, Masaki, Wakabayashi, Kei, Morishima, Atsuyuki.  2020.  Human-in-the-loop Approach towards Dual Process AI Decisions. 2020 IEEE International Conference on Big Data (Big Data). :3096–3098.
How to develop AI systems that can explain how they made decisions is one of the important and hot topics today. Inspired by the dual-process theory in psychology, this paper proposes a human-in-the-loop approach to develop System-2 AI that makes an inference logically and outputs interpretable explanation. Our proposed method first asks crowd workers to raise understandable features of objects of multiple classes and collect training data from the Internet to generate classifiers for the features. Logical decision rules with the set of generated classifiers can explain why each object is of a particular class. In our preliminary experiment, we applied our method to an image classification of Asian national flags and examined the effectiveness and issues of our method. In our future studies, we plan to combine the System-2 AI with System-1 AI (e.g., neural networks) to efficiently output decisions.
Yeruva, Vijaya Kumari, Chandrashekar, Mayanka, Lee, Yugyung, Rydberg-Cox, Jeff, Blanton, Virginia, Oyler, Nathan A.  2020.  Interpretation of Sentiment Analysis with Human-in-the-Loop. 2020 IEEE International Conference on Big Data (Big Data). :3099–3108.
Human-in-the-Loop has been receiving special attention from the data science and machine learning community. It is essential to realize the advantages of human feedback and the pressing need for manual annotation to improve machine learning performance. Recent advancements in natural language processing (NLP) and machine learning have created unique challenges and opportunities for digital humanities research. In particular, there are ample opportunities for NLP and machine learning researchers to analyze data from literary texts and use these complex source texts to broaden our understanding of human sentiment using the human-in-the-loop approach. This paper presents our understanding of how human annotators differ from machine annotators in sentiment analysis tasks and how these differences can contribute to designing systems for the "human in the loop" sentiment analysis in complex, unstructured texts. We further explore the challenges and benefits of the human-machine collaboration for sentiment analysis using a case study in Greek tragedy and address some open questions about collaborative annotation for sentiments in literary texts. We focus primarily on (i) an analysis of the challenges in sentiment analysis tasks for humans and machines, and (ii) whether consistent annotation results are generated from multiple human annotators and multiple machine annotators. For human annotators, we have used a survey-based approach with about 60 college students. We have selected six popular sentiment analysis tools for machine annotators, including VADER, CoreNLP's sentiment annotator, TextBlob, LIME, Glove+LSTM, and RoBERTa. We have conducted a qualitative and quantitative evaluation with the human-in-the-loop approach and confirmed our observations on sentiment tasks using the Greek tragedy case study.
Zhang, Xinyuan, Liu, Hongzhi, Wu, Zhonghai.  2020.  Noise Reduction Framework for Distantly Supervised Relation Extraction with Human in the Loop. 2020 IEEE 10th International Conference on Electronics Information and Emergency Communication (ICEIEC). :1–4.
Distant supervision is a widely used data labeling method for relation extraction. While aligning knowledge base with the corpus, distant supervision leads to a mass of wrong labels which are defined as noise. The pattern-based denoising model has achieved great progress in selecting trustable sentences (instances). However, the writing of relation-specific patterns heavily relies on expert’s knowledge and is a high labor intensity work. To solve these problems, we propose a noise reduction framework, NOIR, to iteratively select trustable sentences with a little help of a human. Under the guidance of experts, the iterative process can avoid semantic drift. Besides, NOIR can help experts discover relation-specific tokens that are hard to think of. Experimental results on three real-world datasets show the effectiveness of the proposed method compared with state-of-the-art methods.
Antunes, Rui Azevedo, Brito Palma, Luís.  2020.  Fitts’ Evaluation of a Developed Human-in-the-Loop Assistive Device. 2020 IEEE International Symposium on Medical Measurements and Applications (MeMeA). :1–6.
In this work, a new human-computer assistive technology gadget designed for people with impairments is evaluated. The developed human-in-the-loop interface device has an embedded assistance controller and can replace the traditional mouse, gamepad and keyboard, enabling human-computer hands-free full access. This work is concerned with the assistive device performance characterization aspects. Based on the experiments carried out, the human-computer performance improvement with the embedded controller is analysed in detail. Results show that adding the human-in-the-loop assistance controller improves human-computer hands-free skills, which is an innovative contribution for the replacement of computer interfaces that depend on the human hands.
Silva, J. Sá, Saldanha, Ruben, Pereira, Vasco, Raposo, Duarte, Boavida, Fernando, Rodrigues, André, Abreu, Madalena.  2019.  WeDoCare: A System for Vulnerable Social Groups. 2019 International Conference on Computational Science and Computational Intelligence (CSCI). :1053–1059.
One of the biggest problems in the current society is people's safety. Safety measures and mechanisms are especially important in the case of vulnerable social groups, such as migrants, homeless, and victims of domestic and/or sexual violence. In order to cope with this problem, we witness an increasing number of personal alarm systems in the market, most of them based on panic buttons. Nevertheless, none of them has got widespread acceptance mainly because of limited Human-Computer Interaction. In the context of this work, we developed an innovative mobile application that recognizes an attack through speech and gesture recognition. This paper describes such a system and presents its features, some of them based on the emerging concept of Human-in-the-Loop Cyber-physical Systems and new concepts of Human-Computer Interaction.
Shin, Ho-Chul.  2019.  Abnormal Detection based on User Feedback for Abstracted Pedestrian Video. 2019 International Conference on Information and Communication Technology Convergence (ICTC). :1036–1038.
In this study, we present the abstracted pedestrian behavior representation and abnormal detection method based on user feedback for pedestrian video surveillance system. Video surveillance data is large in size and difficult to process in real time. To solve this problem, we suggested a method of expressing the pedestrian behavior with abbreviated map. In the video surveillance system, false detection of an abnormal situation becomes a big problem. If surveillance user can guide the false detection case as human in the loop, the surveillance system can learn the case and reduce the false detection error in the future. We suggested user feedback based abnormal pedestrian detection method. By the suggested user feedback algorithm, the false detection can be reduced to less than 0.5%.
Feng, Ri-Chen, Lin, Daw-Tung, Chen, Ken-Min, Lin, Yi-Yao, Liu, Chin-De.  2019.  Improving Deep Learning by Incorporating Semi-automatic Moving Object Annotation and Filtering for Vision-based Vehicle Detection. 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC). :2484–2489.
Deep learning has undergone tremendous advancements in computer vision studies. The training of deep learning neural networks depends on a considerable amount of ground truth datasets. However, labeling ground truth data is a labor-intensive task, particularly for large-volume video analytics applications such as video surveillance and vehicles detection for autonomous driving. This paper presents a rapid and accurate method for associative searching in big image data obtained from security monitoring systems. We developed a semi-automatic moving object annotation method for improving deep learning models. The proposed method comprises three stages, namely automatic foreground object extraction, object annotation in subsequent video frames, and dataset construction using human-in-the-loop quick selection. Furthermore, the proposed method expedites dataset collection and ground truth annotation processes. In contrast to data augmentation and data generative models, the proposed method produces a large amount of real data, which may facilitate training results and avoid adverse effects engendered by artifactual data. We applied the constructed annotation dataset to train a deep learning you-only-look-once (YOLO) model to perform vehicle detection on street intersection surveillance videos. Experimental results demonstrated that the accurate detection performance was improved from a mean average precision (mAP) of 83.99 to 88.03.
Boddy, Aaron, Hurst, William, Mackay, Michael, El Rhalibi, Abdennour.  2019.  A Hybrid Density-Based Outlier Detection Model for Privacy in Electronic Patient Record system. 2019 5th International Conference on Information Management (ICIM). :92–96.
This research concerns the detection of unauthorised access within hospital networks through the real-time analysis of audit logs. Privacy is a primary concern amongst patients due to the rising adoption of Electronic Patient Record (EPR) systems. There is growing evidence to suggest that patients may withhold information from healthcare providers due to lack of Trust in the security of EPRs. Yet, patient record data must be available to healthcare providers at the point of care. Ensuring privacy and confidentiality of that data is challenging. Roles within healthcare organisations are dynamic and relying on access control is not sufficient. Through proactive monitoring of audit logs, unauthorised accesses can be detected and presented to an analyst for review. Advanced data analytics and visualisation techniques can be used to aid the analysis of big data within EPR audit logs to identify and highlight pertinent data points. Employing a human-in-the-loop model ensures that suspicious activity is appropriately investigated and the data analytics is continuously improving. This paper presents a system that employs a Human-in-the-Loop Machine Learning (HILML) algorithm, in addition to a density-based local outlier detection model. The system is able to detect 145 anomalous behaviours in an unlabelled dataset of 1,007,727 audit logs. This equates to 0.014% of the EPR accesses being labelled as anomalous in a specialist Liverpool (UK) hospital.
Hung, Benjamin W.K., Muramudalige, Shashika R., Jayasumana, Anura P., Klausen, Jytte, Libretti, Rosanne, Moloney, Evan, Renugopalakrishnan, Priyanka.  2019.  Recognizing Radicalization Indicators in Text Documents Using Human-in-the-Loop Information Extraction and NLP Techniques. 2019 IEEE International Symposium on Technologies for Homeland Security (HST). :1–7.
Among the operational shortfalls that hinder law enforcement from achieving greater success in preventing terrorist attacks is the difficulty in dynamically assessing individualized violent extremism risk at scale given the enormous amount of primarily text-based records in disparate databases. In this work, we undertake the critical task of employing natural language processing (NLP) techniques and supervised machine learning models to classify textual data in analyst and investigator notes and reports for radicalization behavioral indicators. This effort to generate structured knowledge will build towards an operational capability to assist analysts in rapidly mining law enforcement and intelligence databases for cues and risk indicators. In the near-term, this effort also enables more rapid coding of biographical radicalization profiles to augment a research database of violent extremists and their exhibited behavioral indicators.