Visible to the public Biblio

Filters: Keyword is context information  [Clear All Filters]
2020-01-13
Li, Nan, Varadharajan, Vijay, Nepal, Surya.  2019.  Context-Aware Trust Management System for IoT Applications with Multiple Domains. 2019 IEEE 39th International Conference on Distributed Computing Systems (ICDCS). :1138–1148.
The Internet of Things (IoT) provides connectivity between heterogeneous devices in different applications, such as smart wildlife, supply chain and traffic management. Trust management system (TMS) assesses the trustworthiness of service with respect to its quality. Under different context information, a service provider may be trusted in one context but not in another. The existing context-aware trust models usually store trust values under different contexts and search the closest (to a given context) record to evaluate the trustworthiness of a service. However, it is not suitable for distributed resource-constrained IoT devices which have small memory and low power. Reputation systems are applied in many trust models where trustor obtains recommendations from others. In context-based trust evaluation, it requires interactive queries to find relevant information from remote devices. The communication overhead and energy consumption are issues in low power networks like 6LoWPAN. In this paper, we propose a new context-aware trust model for lightweight IoT devices. The proposed model provides a trustworthiness overview of a service provider without storing past behavior records, that is, constant size storage. The proposed model allows a trustor to decide the significance of context items. This could result in distinctive decisions under the same trustworthiness record. We also show the performance of the proposed model under different attacks.
2015-05-05
Heimerl, F., Lohmann, S., Lange, S., Ertl, T..  2014.  Word Cloud Explorer: Text Analytics Based on Word Clouds. System Sciences (HICSS), 2014 47th Hawaii International Conference on. :1833-1842.

Word clouds have emerged as a straightforward and visually appealing visualization method for text. They are used in various contexts as a means to provide an overview by distilling text down to those words that appear with highest frequency. Typically, this is done in a static way as pure text summarization. We think, however, that there is a larger potential to this simple yet powerful visualization paradigm in text analytics. In this work, we explore the usefulness of word clouds for general text analysis tasks. We developed a prototypical system called the Word Cloud Explorer that relies entirely on word clouds as a visualization method. It equips them with advanced natural language processing, sophisticated interaction techniques, and context information. We show how this approach can be effectively used to solve text analysis tasks and evaluate it in a qualitative user study.