Visible to the public Biblio

Filters: Keyword is software reliability  [Clear All Filters]
2022-05-19
Fursova, Natalia, Dovgalyuk, Pavel, Vasiliev, Ivan, Klimushenkova, Maria, Egorov, Danila.  2021.  Detecting Attack Surface With Full-System Taint Analysis. 2021 IEEE 21st International Conference on Software Quality, Reliability and Security Companion (QRS-C). :1161–1162.
Attack surface detection for the complex software is needed to find targets for the fuzzing, because testing the whole system with many inputs is not realistic. Researchers that previously applied taint analysis for dealing with different security tasks in the virtual machines did not examined how to apply it for attack surface detection. I.e., getting the program modules and functions, that may be affected by input data. We propose using taint tracking within a virtual machine and virtual machine introspection to create a new approach that can detect the internal module interfaces that can be fuzz tested to assure that software is safe or find the vulnerabilities.
2022-05-06
Wotawa, Franz, Klampfl, Lorenz, Jahaj, Ledio.  2021.  A framework for the automation of testing computer vision systems. 2021 IEEE/ACM International Conference on Automation of Software Test (AST). :121–124.
Vision systems, i.e., systems that enable the detection and tracking of objects in images, have gained substantial importance over the past decades. They are used in quality assurance applications, e.g., for finding surface defects in products during manufacturing, surveillance, but also automated driving, requiring reliable behavior. Interestingly, there is only little work on quality assurance and especially testing of vision systems in general. In this paper, we contribute to the area of testing vision software, and present a framework for the automated generation of tests for systems based on vision and image recognition with the focus on easy usage, uniform usability and expandability. The framework makes use of existing libraries for modifying the original images and to obtain similarities between the original and modified images. We show how such a framework can be used for testing a particular industrial application on identifying defects on riblet surfaces and present preliminary results from the image classification domain.
2022-04-19
Shafique, Muhammad, Marchisio, Alberto, Wicaksana Putra, Rachmad Vidya, Hanif, Muhammad Abdullah.  2021.  Towards Energy-Efficient and Secure Edge AI: A Cross-Layer Framework ICCAD Special Session Paper. 2021 IEEE/ACM International Conference On Computer Aided Design (ICCAD). :1–9.
The security and privacy concerns along with the amount of data that is required to be processed on regular basis has pushed processing to the edge of the computing systems. Deploying advanced Neural Networks (NN), such as deep neural networks (DNNs) and spiking neural networks (SNNs), that offer state-of-the-art results on resource-constrained edge devices is challenging due to the stringent memory and power/energy constraints. Moreover, these systems are required to maintain correct functionality under diverse security and reliability threats. This paper first discusses existing approaches to address energy efficiency, reliability, and security issues at different system layers, i.e., hardware (HW) and software (SW). Afterward, we discuss how to further improve the performance (latency) and the energy efficiency of Edge AI systems through HW/SW-level optimizations, such as pruning, quantization, and approximation. To address reliability threats (like permanent and transient faults), we highlight cost-effective mitigation techniques, like fault-aware training and mapping. Moreover, we briefly discuss effective detection and protection techniques to address security threats (like model and data corruption). Towards the end, we discuss how these techniques can be combined in an integrated cross-layer framework for realizing robust and energy-efficient Edge AI systems.
Liévin, Romain, Jamont, Jean-Paul, Hely, David.  2021.  CLASA : a Cross-Layer Agent Security Architecture for networked embedded systems. 2021 IEEE International Conference on Omni-Layer Intelligent Systems (COINS). :1–8.

Networked embedded systems (which include IoT, CPS, etc.) are vulnerable. Even though we know how to secure these systems, their heterogeneity and the heterogeneity of security policies remains a major problem. Designers face ever more sophisticated attacks while they are not always security experts and have to get a trade-off on design criteria. We propose in this paper the CLASA architecture (Cross-Layer Agent Security Architecture), a generic, integrated, inter-operable, decentralized and modular architecture which relies on cross-layering.

2022-03-14
Farooq, Muhammad Usman, Rashid, Muhammad, Azam, Farooque, Rasheed, Yawar, Anwar, Muhammad Waseem, Shahid, Zohaib.  2021.  A Model-Driven Framework for the Prevention of DoS Attacks in Software Defined Networking (SDN). 2021 IEEE International Systems Conference (SysCon). :1–7.
Security is a key component of the network. Software Defined Networking (SDN) is a refined form of traditional network management system. It is a new encouraging approach to design-build and manage networks. SDN decouples control plane (software-based router) and data plane (software-based switch), hence it is programmable. Consequently, it facilitates implementation of security based applications for the prevention of DOS attacks. Various solutions have been proposed by researches for handling of DOS attacks in SDN. However, these solutions are very limited in scope, complex, time consuming and change resistant. In this article, we have proposed a novel model driven framework i.e. MDAP (Model Based DOS Attacks Prevention) Framework. Particularly, a meta model is proposed. As tool support, a tree editor and a Sirius based graphical modeling tool with drag drop palette have been developed in Oboe designer community edition. The tool support allows modeling and visualization of simple and complex network topology scenarios. A Model to Text transformation engine has also been made part of framework that generates java code for the Floodlight SDN controller from the modeled scenario. The validity of proposed framework has been demonstrated via case study. The results prove that the proposed framework can effectively handle DOS attacks in SDN with simplicity as per the true essence of MDSE and can be reliably used for the automation of security based applications in order to deny DOS attacks in SDN.
Tempel, Sören, Herdt, Vladimir, Drechsler, Rolf.  2021.  Towards Reliable Spatial Memory Safety for Embedded Software by Combining Checked C with Concolic Testing. 2021 58th ACM/IEEE Design Automation Conference (DAC). :667—672.
In this paper we propose to combine the safe C dialect Checked C with concolic testing to obtain an effective methodology for attaining safer C code. Checked C is a modern and backward compatible extension to the C programming language which provides facilities for writing memory-safe C code. We utilize incremental conversions of unsafe C software to Checked C. After each increment, we leverage concolic testing, an effective test generation technique, to support the conversion process by searching for newly introduced and existing bugs.Our RISC-V experiments using the RIOT Operating System (OS) demonstrate the effectiveness of our approach. We uncovered 4 previously unknown bugs and 3 bugs accidentally introduced through our conversion process.
2022-03-01
Meng, Qinglan, Pang, Xiyu, Zheng, Yanli, Jiang, Gangwu, Tian, Xin.  2021.  Development and Optimization of Software Defined Networking Anomaly Detection Architecture by GRU-CNN under Deep Learning. 2021 6th International Conference on Intelligent Computing and Signal Processing (ICSP). :828–834.
Ensuring the network security, resists the malicious traffic attacks as much as possible, and ensuring the network security, the Gated Recurrent Unit (GRU) and Convolutional Neural Network (CNN) are combined. Then, a Software Defined Networking (SDN) anomaly detection architecture is built and continuously optimized to ensure network security as much as possible and enhance the reliability of the detection architecture. The results show that the proposed network architecture can greatly improve the accuracy of detection, and its performance will be different due to the different number of CNN layers. When the two-layer CNN structure is selected, its performance is the best among all algorithms. Especially, the accuracy of GRU- CNN-2 is 98.7%, which verifies that the proposed method is effective. Therefore, under deep learning, the utilization of GRU- CNN to explore and optimize the SDN anomaly detection is of great significance to ensure information transmission security in the future.
2022-02-25
Pandey, Manish, Kwon, Young-Woo.  2021.  Middleware for Edge Devices in Mobile Edge Computing. 2021 36th International Technical Conference on Circuits/Systems, Computers and Communications (ITC-CSCC). :1—4.
In mobile edge computing, edge devices collect data, and an edge server performs computational or data processing tasks that need real-time processing. Depending upon the requested task's complexity, an edge server executes it locally or remotely in the cloud. When an edge server needs to offload its computational tasks, there could be a sudden failure in the cloud or network. In this scenario, we need to provide a flexible execution model to edge devices and servers for the continuous execution of the task. To that end, in this paper, we induced a middleware system that allows an edge server to execute a task on the edge devices instead of offloading it to a cloud server. Edge devices not only send data to an edge server for further processing but also execute edge services by utilizing nearby edge devices' computing resources. We extend the concept of service-oriented architecture and integrate a decentralized peer-to-peer network architecture to achieve reusability, location-specific security, and reliability. By following our methodology, software developers can enhance their application in a collaborative environment without worrying about low-level implementation.
2022-02-22
Tan, Qinyun, Xiao, Kun, He, Wen, Lei, Pinyuan, Chen, Lirong.  2021.  A Global Dynamic Load Balancing Mechanism with Low Latency for Micokernel Operating System. 2021 7th International Symposium on System and Software Reliability (ISSSR). :178—187.
As Internet of Things(IOT) devices become intelli-gent, more powerful computing capability is required. Multi-core processors are widely used in IoT devices because they provide more powerful computing capability while ensuring low power consumption. Therefore, it requires the operating system on IoT devices to support and optimize the scheduling algorithm for multi-core processors. Nowadays, microkernel-based operating systems, such as QNX Neutrino RTOS and HUAWEI Harmony OS, are widely used in IoT devices because of their real-time and security feature. However, research on multi-core scheduling for microkernel operating systems is relatively limited, especially for load balancing mechanisms. Related research is still mainly focused on the traditional monolithic operating systems, such as Linux. Therefore, this paper proposes a low-latency, high- performance, and high real-time centralized global dynamic multi-core load balancing method for the microkernel operating system. It has been implemented and tested on our own microkernel operating system named Mginkgo. The test results show that when there is load imbalance in the system, load balancing can be performed automatically so that all processors in the system can try to achieve the maximum throughput and resource utilization. And the latency brought by load balancing to the system is very low, about 4882 cycles (about 6.164us) triggered by new task creation and about 6596 cycles (about 8.328us) triggered by timing. In addition, we also tested the improvement of system throughput and CPU utilization. The results show that load balancing can improve the CPU utilization by 20% under the preset case, while the CPU utilization occupied by load balancing is negligibly low, about 0.0082%.
2022-01-31
Grabatin, Michael, Hommel, Wolfgang.  2021.  Self-sovereign Identity Management in Wireless Ad Hoc Mesh Networks. 2021 IFIP/IEEE International Symposium on Integrated Network Management (IM). :480–486.

Verifying the identity of nodes within a wireless ad hoc mesh network and the authenticity of their messages in sufficiently secure, yet power-efficient ways is a long-standing challenge. This paper shows how the more recent concepts of self-sovereign identity management can be applied to Internet-of-Things mesh networks, using LoRaWAN as an example and applying Sovrin's decentralized identifiers and verifiable credentials in combination with Schnorr signatures for securing the communication with a focus on simplex and broadcast connections. Besides the concept and system architecture, the paper discusses an ESP32-based implementation using SX1276/SX1278 LoRa chips, adaptations made to the lmic- and MbedTLS-based software stack, and practically evaluates performance aspects in terms of data overhead, time-on-air impact, and power consumption.

2021-11-29
Yau, Stephen S., Patel, Jinal S..  2020.  A Blockchain-Based Testing Approach for Collaborative Software Development. 2020 IEEE International Conference on Blockchain (Blockchain). :98–105.
Development of large-scale and complex software systems requires multiple teams, including software development teams, domain experts, user representatives, and other project stakeholders, to work collaboratively to achieve software development goals. These teams rely on the use of agreed software development processes, knowledge management tools, and communication channels collaboratively in the software development project. Software testing is an important and complicated process due to reasons such as difficulties in achieving testing goals with the given time constraint, absence of efficient data sharing policies, vague testing acceptance criteria at various levels of testing, and lack of trusted coordination among the teams involved in software testing. The efficiency of the software testing relies on efficient, reliable, and trusted information sharing among these teams. Existing approaches to software testing for collaborative software development use centralized or decentralize tools for software testing, knowledge management, and communication channels. Existing approaches have the limitations of centralized authority, a single point of failure/compromise, lack of automatic requirement compliance checking and transparency in information sharing, and lack of unified data sharing policy, and reliable knowledge management repositories for sharing and storing past software testing artifacts and data. In this paper, a software testing approach for collaborative software development using private blockchain is presented, and the desirable properties of private blockchain, such as distributed data management, tamper-resistance, auditability and automatic requirement compliance checking, are incorporated to greatly improve the quality of software testing for collaborative software development.
2021-11-08
Wilhjelm, Carl, Younis, Awad A..  2020.  A Threat Analysis Methodology for Security Requirements Elicitation in Machine Learning Based Systems. 2020 IEEE 20th International Conference on Software Quality, Reliability and Security Companion (QRS-C). :426–433.
Machine learning (ML) models are now a key component for many applications. However, machine learning based systems (MLBSs), those systems that incorporate them, have proven vulnerable to various new attacks as a result. Currently, there exists no systematic process for eliciting security requirements for MLBSs that incorporates the identification of adversarial machine learning (AML) threats with those of a traditional non-MLBS. In this research study, we explore the applicability of traditional threat modeling and existing attack libraries in addressing MLBS security in the requirements phase. Using an example MLBS, we examined the applicability of 1) DFD and STRIDE in enumerating AML threats; 2) Microsoft SDL AI/ML Bug Bar in ranking the impact of the identified threats; and 3) the Microsoft AML attack library in eliciting threat mitigations to MLBSs. Such a method has the potential to assist team members, even with only domain specific knowledge, to collaboratively mitigate MLBS threats.
2021-10-04
Lu, Shuaibing, Kuang, Xiaohui, Nie, Yuanping, Lin, Zhechao.  2020.  A Hybrid Interface Recovery Method for Android Kernels Fuzzing. 2020 IEEE 20th International Conference on Software Quality, Reliability and Security (QRS). :335–346.
Android kernel fuzzing is a research area of interest specifically for detecting kernel vulnerabilities which may allow attackers to obtain the root privilege. The number of Android mobile phones is increasing rapidly with the explosive growth of Android kernel drivers. Interface aware fuzzing is an effective technique to test the security of kernel driver. Existing researches rely on static analysis with kernel source code. However, in fact, there exist millions of Android mobile phones without public accessible source code. In this paper, we propose a hybrid interface recovery method for fuzzing kernels which can recover kernel driver interface no matter the source code is available or not. In white box condition, we employ a dynamic interface recover method that can automatically and completely identify the interface knowledge. In black box condition, we use reverse engineering to extract the key interface information and use similarity computation to infer argument types. We evaluate our hybrid algorithm on on 12 Android smartphones from 9 vendors. Empirical experimental results show that our method can effectively recover interface argument lists and find Android kernel bugs. In total, 31 vulnerabilities are reported in white and black box conditions. The vulnerabilities were responsibly disclosed to affected vendors and 9 of the reported vulnerabilities have been already assigned CVEs.
2021-09-30
Ariffin, Sharifah H. S..  2020.  Securing Internet of Things System Using Software Defined Network Based Architecture. 2020 IEEE International RF and Microwave Conference (RFM). :1–5.
Majority of the daily and business activities nowadays are integrated and interconnected to the world across national, geographic and boundaries. Securing the Internet of Things (IoT) system is a challenge as these low powered devices in IoT system are very vulnerable to cyber-attacks and this will reduce the reliability of the system. Software Defined Network (SDN) intends to greatly facilitate the policy enforcement and dynamic network reconfiguration. This paper presents several architectures in the integration of IoT via SDN to improve security in the network and system.
2021-08-12
Kim, Byoungkoo, Yoon, Seoungyong, Kang, Yousung, Choi, Dooho.  2020.  Secure IoT Device Authentication Scheme using Key Hiding Technology. 2020 International Conference on Information and Communication Technology Convergence (ICTC). :1808—1810.
As the amount of information distributed and processed through IoT(Internet of Things) devices is absolutely increased, various security issues are also emerging. Above all, since IoT technology is directly applied to our real life, there is a growing concern that the dangers of the existing cyberspace can be expanded into the real world. In particular, leaks of keys necessary for authentication and data protection of IoT devices are causing economic and industrial losses through illegal copying and data leakage. Therefore, this paper introduces the research trend of hardware and software based key hiding technology to respond to these security threats, and proposes IoT device authentication techniques using them. The proposed method fundamentally prevents the threat of exposure of the authentication key due to various security vulnerabilities by properly integrating hardware and software based key hiding technologies. That is, this paper provides a more reliable IoT device authentication scheme by using key hiding technology for authentication key management.
2021-07-08
Dovgalyuk, Pavel, Vasiliev, Ivan, Fursova, Natalia, Dmitriev, Denis, Abakumov, Mikhail, Makarov, Vladimir.  2020.  Non-intrusive Virtual Machine Analysis and Reverse Debugging with SWAT. 2020 IEEE 20th International Conference on Software Quality, Reliability and Security (QRS). :196—203.
This paper presents SWAT - System-Wide Analysis Toolkit. It is based on open source emulation and debugging projects and implements the approaches for non-intrusive system-wide analysis and debugging: lightweight OS-agnostic virtual machine introspection, full system execution replay, non-intrusive debugging with WinDbg, and full system reverse debugging. These features are based on novel non-intrusive introspection and reverse debugging methods. They are useful for stealth debugging and analysis of the platforms with custom kernels. SWAT includes multi-platform emulator QEMU with additional instrumentation and debugging features, GUI for convenient QEMU setup and execution, QEMU plugin for non-intrusive introspection, and modified version of GDB. Our toolkit may be useful for the developers of the virtual platforms, emulators, and firmwares/drivers/operating systems. Virtual machine intospection approach does not require loading any guest agents and source code of the OS. Therefore it may be applied to ROM-based guest systems and enables using of record/replay of the system execution. This paper includes the description of SWAT components, analysis methods, and some SWAT use cases.
2021-06-28
Chen, Yi-Fan, Huang, Ding-Hsiang, Huang, Cheng-Fu, Lin, Yi-Kuei.  2020.  Reliability Evaluation for a Cloud Computer Network with Fog Computing. 2020 IEEE 20th International Conference on Software Quality, Reliability and Security Companion (QRS-C). :682–683.
The most recent and important developments in the field of computer networks are cloud and fog computing. In this study, modern cloud computer networks comprising computers, internet of things (IoT), fog servers, and cloud servers for data transmission, is investigated. A cloud computer networks can be modeled as a network with nodes and arcs, in which each arc represents a transmission line, and each node represents an IoT device, a fog server, or a cloud server. Each transmission line has several possible capacities and is regarded as a multistate. The network is termed a multi-state cloud computer network (MCCN). this study firstly constructs the mathematic model to elucidate the flow relationship among the IoT devices, edge servers, and cloud servers and subsequently develop an algorithm to evaluate the performance of the MCCN by calculating network reliability which is defined as the probability of the data being successfully processed by the MCCN.
2021-06-01
Zheng, Yang, Chunlin, Yin, Zhengyun, Fang, Na, Zhao.  2020.  Trust Chain Model and Credibility Analysis in Software Systems. 2020 5th International Conference on Computer and Communication Systems (ICCCS). :153–156.
The credibility of software systems is an important indicator in measuring the performance of software systems. Effective analysis of the credibility of systems is a controversial topic in the research of trusted software. In this paper, the trusted boot and integrity metrics of a software system are analyzed. The different trust chain models, chain and star, are obtained by using different methods for credibility detection of functional modules in the system operation. Finally, based on the operation of the system, trust and failure relation graphs are established to analyze and measure the credibility of the system.
2021-05-25
Bosio, Alberto, Canal, Ramon, Di Carlo, Stefano, Gizopoulos, Dimitris, Savino, Alessandro.  2020.  Cross-Layer Soft-Error Resilience Analysis of Computing Systems. 2020 50th Annual IEEE-IFIP International Conference on Dependable Systems and Networks-Supplemental Volume (DSN-S). :79—79.
In a world with computation at the epicenter of every activity, computing systems must be highly resilient to errors even if miniaturization makes the underlying hardware unreliable. Techniques able to guarantee high reliability are associated to high costs. Early resilience analysis has the potential to support informed design decisions to maximize system-level reliability while minimizing the associated costs. This tutorial focuses on early cross-layer (hardware and software) resilience analysis considering the full computing continuum (from IoT/CPS to HPC applications) with emphasis on soft errors.
2021-05-13
Suriano, Antonio, Striccoli, Domenico, Piro, Giuseppe, Bolla, Raffele, Boggia, Gennaro.  2020.  Attestation of Trusted and Reliable Service Function Chains in the ETSI-NFV Framework. 2020 6th IEEE Conference on Network Softwarization (NetSoft). :479—486.

The new generation of digital services are natively conceived as an ordered set of Virtual Network Functions, deployed across boundaries and organizations. In this context, security threats, variable network conditions, computational and memory capabilities and software vulnerabilities may significantly weaken the whole service chain, thus making very difficult to combat the newest kinds of attacks. It is thus extremely important to conceive a flexible (and standard-compliant) framework able to attest the trustworthiness and the reliability of each single function of a Service Function Chain. At the time of this writing, and to the best of authors knowledge, the scientific literature addressed all of these problems almost separately. To bridge this gap, this paper proposes a novel methodology, properly tailored within the ETSI-NFV framework. From one side, Software-Defined Controllers continuously monitor the properties and the performance indicators taken from networking domains of each single Virtual Network Function available in the architecture. From another side, a high-level orchestrator combines, on demand, the suitable Virtual Network Functions into a Service Function Chain, based on the user requests, targeted security requirements, and measured reliability levels. The paper concludes by further explaining the functionalities of the proposed architecture through a use case.

2021-05-03
Mishra, Shachee, Polychronakis, Michalis.  2020.  Saffire: Context-sensitive Function Specialization against Code Reuse Attacks. 2020 IEEE European Symposium on Security and Privacy (EuroS P). :17–33.
The sophistication and complexity of recent exploitation techniques, which rely on memory disclosure and whole-function reuse to bypass address space layout randomization and control flow integrity, is indicative of the effect that the combination of exploit mitigations has in challenging the construction of reliable exploits. In addition to software diversification and control flow enforcement, recent efforts have focused on the complementary approach of code and API specialization to restrict further the critical operations that an attacker can perform as part of a code reuse exploit. In this paper we propose Saffire, a compiler-level defense against code reuse attacks. For each calling context of a critical function, Saffire creates a specialized and hardened replica of the function with a restricted interface that can accommodate only that particular invocation. This is achieved by applying staticargumentbinding, to eliminate arguments with static values and concretize them within the function body, and dynamicargumentbinding, which applies a narrow-scope form of data flow integrity to restrict the acceptable values of arguments that cannot be statically derived. We have implemented Saffire on top of LLVM, and applied it to a set of 11 applications, including Nginx, Firefox, and Chrome. The results of our experimental evaluation with a set of 17 real-world ROP exploits and three whole-function reuse exploits demonstrate the effectiveness of Saffire in preventing these attacks while incurring a negligible runtime overhead.
2021-04-27
Phillips, T., McJunkin, T., Rieger, C., Gardner, J., Mehrpouyan, H..  2020.  An Operational Resilience Metric for Modern Power Distribution Systems. 2020 IEEE 20th International Conference on Software Quality, Reliability and Security Companion (QRS-C). :334—342.

The electrical power system is the backbone of our nations critical infrastructure. It has been designed to withstand single component failures based on a set of reliability metrics which have proven acceptable during normal operating conditions. However, in recent years there has been an increasing frequency of extreme weather events. Many have resulted in widespread long-term power outages, proving reliability metrics do not provide adequate energy security. As a result, researchers have focused their efforts resilience metrics to ensure efficient operation of power systems during extreme events. A resilient system has the ability to resist, adapt, and recover from disruptions. Therefore, resilience has demonstrated itself as a promising concept for currently faced challenges in power distribution systems. In this work, we propose an operational resilience metric for modern power distribution systems. The metric is based on the aggregation of system assets adaptive capacity in real and reactive power. This metric gives information to the magnitude and duration of a disturbance the system can withstand. We demonstrate resilience metric in a case study under normal operation and during a power contingency on a microgrid. In the future, this information can be used by operators to make more informed decisions based on system resilience in an effort to prevent power outages.

2021-02-23
Liu, J., Xiao, K., Luo, L., Li, Y., Chen, L..  2020.  An intrusion detection system integrating network-level intrusion detection and host-level intrusion detection. 2020 IEEE 20th International Conference on Software Quality, Reliability and Security (QRS). :122—129.
With the rapid development of Internet, the issue of cyber security has increasingly gained more attention. An intrusion Detection System (IDS) is an effective technique to defend cyber-attacks and reduce security losses. However, the challenge of IDS lies in the diversity of cyber-attackers and the frequently-changing data requiring a flexible and efficient solution. To address this problem, machine learning approaches are being applied in the IDS field. In this paper, we propose an efficient scalable neural-network-based hybrid IDS framework with the combination of Host-level IDS (HIDS) and Network-level IDS (NIDS). We applied the autoencoders (AE) to NIDS and designed HIDS using word embedding and convolutional neural network. To evaluate the IDS, many experiments are performed on the public datasets NSL-KDD and ADFA. It can detect many attacks and reduce the security risk with high efficiency and excellent scalability.
2021-01-28
Fan, M., Yu, L., Chen, S., Zhou, H., Luo, X., Li, S., Liu, Y., Liu, J., Liu, T..  2020.  An Empirical Evaluation of GDPR Compliance Violations in Android mHealth Apps. 2020 IEEE 31st International Symposium on Software Reliability Engineering (ISSRE). :253—264.

The purpose of the General Data Protection Regulation (GDPR) is to provide improved privacy protection. If an app controls personal data from users, it needs to be compliant with GDPR. However, GDPR lists general rules rather than exact step-by-step guidelines about how to develop an app that fulfills the requirements. Therefore, there may exist GDPR compliance violations in existing apps, which would pose severe privacy threats to app users. In this paper, we take mobile health applications (mHealth apps) as a peephole to examine the status quo of GDPR compliance in Android apps. We first propose an automated system, named HPDROID, to bridge the semantic gap between the general rules of GDPR and the app implementations by identifying the data practices declared in the app privacy policy and the data relevant behaviors in the app code. Then, based on HPDROID, we detect three kinds of GDPR compliance violations, including the incompleteness of privacy policy, the inconsistency of data collections, and the insecurity of data transmission. We perform an empirical evaluation of 796 mHealth apps. The results reveal that 189 (23.7%) of them do not provide complete privacy policies. Moreover, 59 apps collect sensitive data through different measures, but 46 (77.9%) of them contain at least one inconsistent collection behavior. Even worse, among the 59 apps, only 8 apps try to ensure the transmission security of collected data. However, all of them contain at least one encryption or SSL misuse. Our work exposes severe privacy issues to raise awareness of privacy protection for app users and developers.

2021-01-20
Li, H., Xie, R., Kong, X., Wang, L., Li, B..  2020.  An Analysis of Utility for API Recommendation: Do the Matched Results Have the Same Efforts? 2020 IEEE 20th International Conference on Software Quality, Reliability and Security (QRS). :479—488.

The current evaluation of API recommendation systems mainly focuses on correctness, which is calculated through matching results with ground-truth APIs. However, this measurement may be affected if there exist more than one APIs in a result. In practice, some APIs are used to implement basic functionalities (e.g., print and log generation). These APIs can be invoked everywhere, and they may contribute less than functionally related APIs to the given requirements in recommendation. To study the impacts of correct-but-useless APIs, we use utility to measure them. Our study is conducted on more than 5,000 matched results generated by two specification-based API recommendation techniques. The results show that the matched APIs are heavily overlapped, 10% APIs compose more than 80% matched results. The selected 10% APIs are all correct, but few of them are used to implement the required functionality. We further propose a heuristic approach to measure the utility and conduct an online evaluation with 15 developers. Their reports confirm that the matched results with higher utility score usually have more efforts on programming than the lower ones.