Visible to the public Biblio

Filters: Keyword is AODV protocol  [Clear All Filters]
2022-03-23
Shah, Priyanka, Kasbe, Tanmay.  2021.  Detecting Sybil Attack, Black Hole Attack and DoS Attack in VANET Using RSA Algorithm. 2021 Emerging Trends in Industry 4.0 (ETI 4.0). :1—7.
In present scenario features like low-cost, power-efficientand easy-to-implement Wireless Sensor Networks (WSN’s) has become one of growing prospects.though, its security issues have become a popular topic of research nowadays. Specific attacks often experience the security issues as they easily combined with other attacks to destroy the network. In this paper, we discuss about detecting the particular attacks like Sybil, Black-holeand Denial of Service (DoS) attacks on WSNs. These networks are more vulnerable to them. We attempt to investigate the security measures and the applicability of the AODV protocol to detect and manage specific types of network attacks in VANET.The RSA algorithm is proposed here, as it is capable of detecting sensor nodes ormessages transmitted from sensor nodes to the base station and prevents network from being attacked by the source node. It also improves the security mechanism of the AODV protocol. This simulation set up is performed using MATLAB simulation tool
2022-02-07
Shah, Imran Ali, Kapoor, Nitika.  2021.  To Detect and Prevent Black Hole Attack in Mobile Ad Hoc Network. 2021 2nd Global Conference for Advancement in Technology (GCAT). :1–4.
Mobile Ad hoc Networks ‘MANETs’ are still defenseless against peripheral threats due to the fact that this network has vulnerable access and also the absence of significant fact of administration. The black hole attack is a kind of some routing attack, in this type of attack the attacker node answers to the Route Requests (RREQs) thru faking and playing itself as an adjacent node of the destination node in order to get through the data packets transported from the source node. To counter this situation, we propose to deploy some nodes (exhibiting some distinctive functionality) in the network called DPS (Detection and Prevention System) nodes that uninterruptedly monitor the RREQs advertised by all other nodes in the networks. DPS nodes target to satisfy the set objectives in which it has to sense the mischievous nodes by detecting the activities of their immediate neighbor. In the case, when a node demonstrates some peculiar manners, which estimates according to the experimental data, DPS node states that particular distrustful node as black hole node by propagation of a threat message to all the remaining nodes in the network. A protocol with a clustering approach in AODV routing protocol is used to sense and avert the black hole attack in the mentioned network. Consequently, empirical evaluation shows that the black hole node is secluded and prohibited from the whole system and is not allowed any data transfer from any node thereafter.
2020-12-02
Kaur, M., Malik, A..  2018.  An Efficient and Reliable Routing Protocol Using Bio-Inspired Techniques for Congestion Control in WSN. 2018 4th International Conference on Computing Sciences (ICCS). :15—22.

In wireless sensor networks (WSNs), congestion control is a very essential region of concern. When the packets that are coming get increased than the actual capacity of network or nodes results into congestion in the network. Congestion in network can cause reduction in throughput, increase in network delay, and increase in packet loss and sensor energy waste. For that reason, new complex methods are mandatory to tackle with congestion. So it is necessary to become aware of congestion and manage the congested resources in wireless sensor networks for enhancing the network performance. Diverse methodologies for congestion recognition and prevention have been presented in the previous couple of years. To handle some of the problems, this paper exhibits a new technique for controlling the congestion. An efficient and reliable routing protocol (ERRP) based on bio inspired algorithms is introduced in this paper for solving congestion problem. In the proposed work, a way is calculated to send the packets on the new pathway. The proposed work has used three approaches for finding the path which results into a congestion free path. Our analysis and simulation results shows that our approach provides better performance as compared to previous approaches in terms of throughput, packet loss, delay etc.

2020-11-02
Li, T., Ma, J., Pei, Q., Song, H., Shen, Y., Sun, C..  2019.  DAPV: Diagnosing Anomalies in MANETs Routing With Provenance and Verification. IEEE Access. 7:35302–35316.
Routing security plays an important role in the mobile ad hoc networks (MANETs). Despite many attempts to improve its security, the routing mechanism of MANETs remains vulnerable to attacks. Unlike most existing solutions that prevent the specific problems, our approach tends to detect the misbehavior and identify the anomalous nodes in MANETs automatically. The existing approaches offer support for detecting attacks or debugging in different routing phases, but many of them cannot answer the absence of an event. Besides, without considering the privacy of the nodes, these methods depend on the central control program or a third party to supervise the whole network. In this paper, we present a system called DAPV that can find single or collaborative malicious nodes and the paralyzed nodes which behave abnormally. DAPV can detect both direct and indirect attacks launched during the routing phase. To detect malicious or abnormal nodes, DAPV relies on two main techniques. First, the provenance tracking enables the hosts to deduce the expected log information of the peers with the known log entries. Second, the privacy-preserving verification uses Merkle Hash Tree to verify the logs without revealing any privacy of the nodes. We demonstrate the effectiveness of our approach by applying DAPV to three scenarios: 1) detecting injected malicious intermediated routers which commit active and passive attacks in MANETs; 2) resisting the collaborative black-hole attack of the AODV protocol, and; 3) detecting paralyzed routers in university campus networks. Our experimental results show that our approach can detect the malicious and paralyzed nodes, and the overhead of DAPV is moderate.
2020-10-29
Hossain, Sazzat, Hussain, Md. Sazzad, Ema, Romana Rahman, Dutta, Songita, Sarkar, Suborna, Islam, Tajul.  2019.  Detecting Black hole attack by selecting appropriate routes for authentic message passing using SHA-3 and Diffie-Hellman algorithm in AODV and AOMDV routing protocols in MANET. 2019 10th International Conference on Computing, Communication and Networking Technologies (ICCCNT). :1—7.
Ad hoc network is sensitive to attacks because it has temporary nature and frequently recognized insecure environment. Both Ad hoc On-demand Distance Vector (AODV) and Ad hoc On-demand Multipath Distance vector (AOMDV) routing protocols have the strategy to take help from Wireless and mobile ad hoc networks. A mobile ad hoc network (MANET) is recognized as an useful internet protocol and where the mobile nodes are self-configuring and self-organizing in character. This research paper has focused on the detection and influence of black hole attack on the execution of AODV and AOMDV routing protocols and has also evaluated the performance of those two on-demand routing protocols in MANETs. AODV has the characteristics for discovering a single path in single route discovery and AOMDV has the characteristics for discovering multiple paths in single route discovery. Here a proposed method for both AODV and AOMDV routing protocol, has been applied for the detection of the black hole attack, which is the merge of both SHA-3 and Diffie-Hellman algorithm. This merge technique has been applied to detect black hole attack in MANET. This technique has been applied to measure the performance matrices for both AODV and AOMDV and those performance matrices are Average Throughput, Average End to End delay and Normalized Routing Load. Both AODV and AOMDV routing protocol have been compared with each other to show that under black hole attack, AOMDV protocol always has better execution than AODV protocol. Here, NS-2.35 has been used as the Network Simulator tool for the simulation of these particular three types of performance metrics stated above.
2020-05-26
Fu, Yulong, Li, Guoquan, Mohammed, Atiquzzaman, Yan, Zheng, Cao, Jin, Li, Hui.  2019.  A Study and Enhancement to the Security of MANET AODV Protocol Against Black Hole Attacks. 2019 IEEE SmartWorld, Ubiquitous Intelligence Computing, Advanced Trusted Computing, Scalable Computing Communications, Cloud Big Data Computing, Internet of People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI). :1431–1436.
Mobile AdHoc Networks (MANET) can be fast implemented, and it is very popular in many specific network requirements, such as UAV (Unmanned Aerial Unit), Disaster Recovery and IoT (Internet of Things) etc. However, MANET is also vulnerable. AODV (Ad hoc On-Demand Distance Vector Routing) protocol is one type of MANET routing protocol and many attacks can be implemented to break the connections on AODV based AdHoc networks. In this article, aim of protecting the MANET security, we modeled the AODV protocol with one type of Automata and analyzed the security vulnerabilities of it; then based on the analyzing results, we proposed an enhancement to AODV protocol to against the Black Hole Attacks. We also implemented the proposed enhancement in NS3 simulator and verified the correctness, usability and efficiency.
Kumari, Alpana, Krishnan, Shoba.  2018.  Simulation Based Study of Blackhole Attack Under AODV Protocol. 2018 Fourth International Conference on Computing Communication Control and Automation (ICCUBEA). :1–6.
Mobile adhoc network are fully autonomous where the nodes act both as node as well as router. Centralization is absent in MANETs. In MANETs nodes are continuously moving and have an open access which put it at a risk of large number of attacks. Security in such networks is therefore a critical matter. In order to find solution to this issue various attacks need to be studied and analyzed. In Blackhole attack, the unauthorized node in the path of source and target nodes takes away the packets sent by the source and drops them by not heading them towards the target node. The malicious behavior launched by Blackhole attack deteriorates the network performance.
Li, Guoquan, Yan, Zheng, Fu, Yulong.  2018.  A Study and Simulation Research of Blackhole Attack on Mobile AdHoc Network. 2018 IEEE Conference on Communications and Network Security (CNS). :1–6.
Mobile ad hoc network (MANET) is a kind of mobile multi-hop network which can transmit data through intermediate nodes, it has been widely used and become important since the growing of the market of Internet of Things (IoT). However, the transmissions on MANET are vulnerable, it usually suffered with many internal or external attacks, and the research on security topics of MANET are becoming more and more hot recently. Blackhole Attack is one of the most famous attacks to MANET. In this paper, we focus on the Blackhole Attack in AODV protocol, and use NS-3 network simulator to study the impact of Blackhole Attack on network performance parameters, such as the Throughput, End-to-End Delay and Packet Loss Rate. We further analyze the changes in network performance by adjusting the number of blackhole nodes and total nodes, and the movement speed of mobile nodes. The experimental results not only reflect the behaviors of the Blackhole Attack and its damage to the network, but also provide the characteristics of Blackhole Attacks clearly. This is helpful to the research of Blackhole Attack feature extraction and MANET security measurement.
Sbai, Oussama, Elboukhari, Mohamed.  2018.  Simulation of MANET's Single and Multiple Blackhole Attack with NS-3. 2018 IEEE 5th International Congress on Information Science and Technology (CiSt). :612–617.
Mobile Ad-hoc Networks (MANETs) have gained popularity both in research and in industrial fields. This is due to their ad hoc nature, easy deployment thanks to the lack of fixed infrastructure, self-organization of its components, dynamic topologies and the absence of any central authority for routing. However, MANETs suffer from several vulnerabilities such as battery power, limited memory space, and physical protection of network nodes. In addition, MANETs are sensitive to various attacks that threaten network security like Blackhole attack in its different implementation (single and multiple). In this article, we present the simulation results of single and multiple Blackhole attack in AODV and OLSR protocols on using NS-3.27 simulator. In this simulation, we took into consideration the density of the network described by the number of nodes included in the network, the speed of the nodes, the mobility model and even we chose the IEEE 802.11ac protocol for the pbysicallayer, in order to have a simulation, which deals with more general and more real scenarios. To be able to evaluate the impact of the attack on the network, the Packet delivery rate, Routing overhead, Throughput and Average End to End delay have been chosen as metrics for performance evaluation.
2018-06-20
Mistry, M., Tandel, P., Reshamwala, V..  2017.  Mitigating techniques of black hole attack in MANET: A review. 2017 International Conference on Trends in Electronics and Informatics (ICEI). :554–557.

A Mobile Ad-hoc Network (MANET) is infrastructure-less network where nodes can move arbitrary in any place without the help of any fixed infrastructure. Due to the vague limit, no centralized administrator, dynamic topology and wireless connections it is powerless against various types of assaults. MANET has more threat contrast to any other conventional networks. AODV (Ad-hoc On-demand Distance Vector) is most utilized well-known routing protocol in MANET. AODV protocol is scared by "Black Hole" attack. A black hole attack is a serious assault that can be effortlessly employed towards AODV protocol. A black hole node that incorrectly replies for each path requests while not having active path to targeted destination and drops all the packets that received from other node. If these malicious nodes cooperate with every other as a set then the harm will be very extreme. In this paper, present review on various existing techniques for detection and mitigation of black hole attacks.

2018-04-11
Mayadunna, H., Silva, S. L. De, Wedage, I., Pabasara, S., Rupasinghe, L., Liyanapathirana, C., Kesavan, K., Nawarathna, C., Sampath, K. K..  2017.  Improving Trusted Routing by Identifying Malicious Nodes in a MANET Using Reinforcement Learning. 2017 Seventeenth International Conference on Advances in ICT for Emerging Regions (ICTer). :1–8.

Mobile ad-hoc networks (MANETs) are decentralized and self-organizing communication systems. They have become pervasive in the current technological framework. MANETs have become a vital solution to the services that need flexible establishments, dynamic and wireless connections such as military operations, healthcare systems, vehicular networks, mobile conferences, etc. Hence it is more important to estimate the trustworthiness of moving devices. In this research, we have proposed a model to improve a trusted routing in mobile ad-hoc networks by identifying malicious nodes. The proposed system uses Reinforcement Learning (RL) agent that learns to detect malicious nodes. The work focuses on a MANET with Ad-hoc On-demand Distance Vector (AODV) Protocol. Most of the systems were developed with the assumption of a small network with limited number of neighbours. But with the introduction of reinforcement learning concepts this work tries to minimize those limitations. The main objective of the research is to introduce a new model which has the capability to detect malicious nodes that decrease the performance of a MANET significantly. The malicious behaviour is simulated with black holes that move randomly across the network. After identifying the technology stack and concepts of RL, system design was designed and the implementation was carried out. Then tests were performed and defects and further improvements were identified. The research deliverables concluded that the proposed model arranges for highly accurate and reliable trust improvement by detecting malicious nodes in a dynamic MANET environment.

2015-05-06
Sakharkar, S.M., Mangrulkar, R.S., Atique, M..  2014.  A survey: A secure routing method for detecting false reports and gray-hole attacks along with Elliptic Curve Cryptography in wireless sensor networks. Electrical, Electronics and Computer Science (SCEECS), 2014 IEEE Students' Conference on. :1-5.

Wireless Sensor Networks (WSNs) are used in many applications in military, environmental, and health-related areas. These applications often include the monitoring of sensitive information such as enemy movement on the battlefield or the location of personnel in a building. Security is important in WSNs. However, WSNs suffer from many constraints, including low computation capability, small memory, limited energy resources, susceptibility to physical capture, and the use of insecure wireless communication channels. These constraints make security in WSNs a challenge. In this paper, we try to explore security issue in WSN. First, the constraints, security requirements and attacks with their corresponding countermeasures in WSNs are explained. Individual sensor nodes are subject to compromised security. An adversary can inject false reports into the networks via compromised nodes. Furthermore, an adversary can create a Gray hole by compromised nodes. If these two kinds of attacks occur simultaneously in a network, some of the existing methods fail to defend against those attacks. The Ad-hoc On Demand Distance (AODV) Vector scheme for detecting Gray-Hole attack and Statistical En-Route Filtering is used for detecting false report. For increasing security level, the Elliptic Curve Cryptography (ECC) algorithm is used. Simulations results obtain so far reduces energy consumption and also provide greater network security to some extent.

Sarma, K.J., Sharma, R., Das, R..  2014.  A survey of Black hole attack detection in Manet. Issues and Challenges in Intelligent Computing Techniques (ICICT), 2014 International Conference on. :202-205.

MANET is an infrastructure less, dynamic, decentralised network. Any node can join the network and leave the network at any point of time. Due to its simplicity and flexibility, it is widely used in military communication, emergency communication, academic purpose and mobile conferencing. In MANET there no infrastructure hence each node acts as a host and router. They are connected to each other by Peer-to-peer network. Decentralised means there is nothing like client and server. Each and every node is acted like a client and a server. Due to the dynamic nature of mobile Ad-HOC network it is more vulnerable to attack. Since any node can join or leave the network without any permission the security issues are more challenging than other type of network. One of the major security problems in ad hoc networks called the black hole problem. It occurs when a malicious node referred as black hole joins the network. The black hole conducts its malicious behavior during the process of route discovery. For any received RREQ, the black hole claims having route and propagates a faked RREP. The source node responds to these faked RREPs and sends its data through the received routes once the data is received by the black hole; it is dropped instead of being sent to the desired destination. This paper discusses some of the techniques put forwarded by researchers to detect and prevent Black hole attack in MANET using AODV protocol and based on their flaws a new methodology also have been proposed.