Visible to the public Biblio

Filters: Keyword is Black hole attack  [Clear All Filters]
2023-06-29
Gupta, Sunil, Shahid, Mohammad, Goyal, Ankur, Saxena, Rakesh Kumar, Saluja, Kamal.  2022.  Black Hole Detection and Prevention Using Digital Signature and SEP in MANET. 2022 10th International Conference on Emerging Trends in Engineering and Technology - Signal and Information Processing (ICETET-SIP-22). :1–5.
The MANET architecture's future growth will make extensive use of encryption and encryption to keep network participants safe. Using a digital signature node id, we illustrate how we may stimulate the safe growth of subjective clusters while simultaneously addressing security and energy efficiency concerns. The dynamic topology of MANET allows nodes to join and exit at any time. A form of attack known as a black hole assault was used to accomplish this. To demonstrate that he had the shortest path with the least amount of energy consumption, an attacker in MATLAB R2012a used a digital signature ID to authenticate the node from which he wished to intercept messages (DSEP). “Digital Signature”, “MANET,” and “AODV” are all terms used to describe various types of digital signatures. Black Hole Attack, Single Black Hole Attack, Digital Signature, and DSEP are just a few of the many terms associated with MANET.
ISSN: 2157-0485
2022-03-23
Shah, Priyanka, Kasbe, Tanmay.  2021.  Detecting Sybil Attack, Black Hole Attack and DoS Attack in VANET Using RSA Algorithm. 2021 Emerging Trends in Industry 4.0 (ETI 4.0). :1—7.
In present scenario features like low-cost, power-efficientand easy-to-implement Wireless Sensor Networks (WSN’s) has become one of growing prospects.though, its security issues have become a popular topic of research nowadays. Specific attacks often experience the security issues as they easily combined with other attacks to destroy the network. In this paper, we discuss about detecting the particular attacks like Sybil, Black-holeand Denial of Service (DoS) attacks on WSNs. These networks are more vulnerable to them. We attempt to investigate the security measures and the applicability of the AODV protocol to detect and manage specific types of network attacks in VANET.The RSA algorithm is proposed here, as it is capable of detecting sensor nodes ormessages transmitted from sensor nodes to the base station and prevents network from being attacked by the source node. It also improves the security mechanism of the AODV protocol. This simulation set up is performed using MATLAB simulation tool
2022-02-07
Shah, Imran Ali, Kapoor, Nitika.  2021.  To Detect and Prevent Black Hole Attack in Mobile Ad Hoc Network. 2021 2nd Global Conference for Advancement in Technology (GCAT). :1–4.
Mobile Ad hoc Networks ‘MANETs’ are still defenseless against peripheral threats due to the fact that this network has vulnerable access and also the absence of significant fact of administration. The black hole attack is a kind of some routing attack, in this type of attack the attacker node answers to the Route Requests (RREQs) thru faking and playing itself as an adjacent node of the destination node in order to get through the data packets transported from the source node. To counter this situation, we propose to deploy some nodes (exhibiting some distinctive functionality) in the network called DPS (Detection and Prevention System) nodes that uninterruptedly monitor the RREQs advertised by all other nodes in the networks. DPS nodes target to satisfy the set objectives in which it has to sense the mischievous nodes by detecting the activities of their immediate neighbor. In the case, when a node demonstrates some peculiar manners, which estimates according to the experimental data, DPS node states that particular distrustful node as black hole node by propagation of a threat message to all the remaining nodes in the network. A protocol with a clustering approach in AODV routing protocol is used to sense and avert the black hole attack in the mentioned network. Consequently, empirical evaluation shows that the black hole node is secluded and prohibited from the whole system and is not allowed any data transfer from any node thereafter.
Khan, Asif Uddin, Puree, Rajesh, Mohanta, Bhabendu Kumar, Chedup, Sangay.  2021.  Detection and Prevention of Blackhole Attack in AODV of MANET. 2021 IEEE International IOT, Electronics and Mechatronics Conference (IEMTRONICS). :1–7.
One of the most dynamic network is the Mobile Adhoc (MANET) network. It is a list of numerous mobile nodes. Dynamic topology and lack of centralization are the basic characteristics of MANET. MANETs are prone to many attacks due to these characteristics. One of the attacks carried out on the network layer is the blackhole attack. In a black-hole attack, by sending false routing information, malicious nodes interrupt data transmission. There are two kinds of attacks involving a black-hole, single and co-operative. There is one malicious node in a single black-hole attack that can act as the node with the highest sequence number. The node source would follow the direction of the malicious node by taking the right direction. There is more than one malicious node in the collaborative black-hole attack. One node receives a packet and sends it to another malicious node in this attack. It is very difficult to detect and avoid black-hole attacks. Many researchers have invented black-hole attack detection and prevention systems. In this paper, We find a problem in the existing solution, in which validity bit is used. This paper also provides a comparative study of many scholars. The source node is used to detect and prevent black hole attacks by using a binary partition clustering based algorithm. We compared the performance of the proposed solution with existing solution and shown that our solution outperforms the existing one.
2021-03-09
Venkataramana, B., Jadhav, A..  2020.  Performance Evaluation of Routing Protocols under Black Hole Attack in Cognitive Radio Mesh Network. 2020 International Conference on Emerging Smart Computing and Informatics (ESCI). :98–102.
Wireless technology is rapidly proliferating. Devices such as Laptops, PDAs and cell-phones gained a lot of importance due to the use of wireless technology. Nowadays there is also a huge demand for spectrum allocation and there is a need to utilize the maximum available spectrum in efficient manner. Cognitive Radio (CR) Network is one such intelligent radio network, designed to utilize the maximum licensed bandwidth to un-licensed users. Cognitive Radio has the capability to understand unused spectrum at a given time at a specific location. This capability helps to minimize the interference to the licensed users and improves the performance of the network. Routing protocol selection is one of the main strategies to design any wireless or wired networks. In Cognitive radio networks the selected routing protocol should be best in terms of establishing an efficient route, addressing challenges in network topology and should be able to reduce bandwidth consumption. Performance analysis of the protocols helps to select the best protocol in the network. Objective of this study is to evaluate performance of various cognitive radio network routing protocols like Spectrum Aware On Demand Routing Protocol (SORP), Spectrum Aware Mesh Routing in Cognitive Radio Networks (SAMER) and Dynamic Source Routing (DSR) with and without black hole attack using various performance parameters like Throughput, E2E delay and Packet delivery ratio with the help of NS2 simulator.
Naveena, S., Senthilkumar, C., Manikandan, T..  2020.  Analysis and Countermeasures of Black-Hole Attack in MANET by Employing Trust-Based Routing. 2020 6th International Conference on Advanced Computing and Communication Systems (ICACCS). :1222–1227.
A self-governing system consisting of mobile nodes that exchange information within a cellular area and is known as a mobile ad hoc network (MANET). Due to its dynamic nature, it is vulnerable to attacks and there is no fixed infrastructure. To transfer a data packet Ad-hoc On-Demand Distance Vector (AODV) is used and it's another form of a reactive protocol. The black-hole attack is a major attack that drastically decreases the packet delivery ratio during a data transaction in a routing environment. In this attack, the attacker's node acts as the shortest path to the target node itself. If the attacker node receives the data packet from the source node, all obtained data packets are excluded from a routing network. A trust-based routing scheme is suggested to ensure secure routing. This routing scheme is divided into two stages, i.e., the Data retrieval (DR), to identify and preserve each node data transfer mechanism in a routing environment and route development stage, to predict a safe path to transmit a data packet to the target node.
Chakravorty, R., Prakash, J..  2020.  A Review on Prevention and Detection Schemes for Black Hole Attacks in MANET. 2020 8th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO). :801–806.
Mobile Ad hoc Network (MANET) is one of the emerging technologies to communicate between nodes and its decentralized structure, self-configuring nature are the few properties of this Ad hoc network. Due to its undefined structure, it has found its usage in the desired and temporary communication network. MANET has many routing protocols governing it and due to its changing topology, there can be many issues arise in recent times. Problems like no central node, limited energy, and the quality of service, performance, design issues, and security challenges have been bugging the researchers. The black hole attacks are the kind that cause ad hoc network to be at loss of information and make the source to believe that it has the actual least distance path to the destination, but in real scenario the packets do not get forwarded to neighbouring nodes. In this paper, we have discussed different solutions over the past years to deal with such attacks. A summary of the schemes with their results and drawbacks in terms of performance metrics is also given.
Oakley, I..  2020.  Solutions to Black Hole Attacks in MANETs. 2020 12th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP). :1–6.
Self-organising networks, such as mobile ad-hoc networks (MANETs), are growing more and more in importance each day. However, due to their nature and constraints MANETs are vulnerable to a wide array of attacks, such as black hole attacks. Furthermore, there are numerous routing protocols in use in MANETs, and what works for one might not for another. In this paper, we present a review of previous surveys of black hole attack solutions, followed by a collation of recently published papers categorised by original routing protocol and evaluated on a set of common metrics. Finally, we suggest areas for further research.
Omprakash, S. H., Suthar, M. K..  2020.  Mitigation Technique for Black hole Attack in Mobile Ad hoc Network. 2020 11th International Conference on Computing, Communication and Networking Technologies (ICCCNT). :1–5.
Mobile Ad hoc Network is a very important key technology for device to device communication without any support of extra infrastructure. As it is being used as a mode of communication in various fields, protecting the network from various attacks becomes more important. In this research paper, we have created a real network scenario using random mobility of nodes and implemented Black hole Attack and Gray hole Attack, which degrades the performance of the network. In our research, we have found a novel mitigation technique which is efficient to mitigate both the attack from the network.
Fiade, A., Triadi, A. Yudha, Sulhi, A., Masruroh, S. Ummi, Handayani, V., Suseno, H. Bayu.  2020.  Performance Analysis of Black Hole Attack and Flooding Attack AODV Routing Protocol on VANET (Vehicular Ad-Hoc Network). 2020 8th International Conference on Cyber and IT Service Management (CITSM). :1–5.
Wireless technology is widely used today and is growing rapidly. One of the wireless technologies is VANET where the network can communicate with vehicles (V2V) which can prevent accidents on the road. Energy is also a problem in VANET so it needs to be used efficiently. The presence of malicious nodes or nodes can eliminate and disrupt the process of data communication. The routing protocol used in this study is AODV. The purpose of this study is to analyze the comparison of blackhole attack and flooding attack against energy-efficient AODV on VANET. This research uses simulation methods and several supporting programs such as OpenStreetMap, SUMO, NS2, NAM, and AWK to test the AODV routing protocol. Quality of service (QOS) parameters used in this study are throughput, packet loss, and end to end delay. Energy parameters are also used to examine the energy efficiency used. This study uses the number of variations of nodes consisting of 20 nodes, 40 nodes, 60 nodes, and different network conditions, namely normal network conditions, network conditions with black hole attacks, and network conditions with flooding attacks. The results obtained can be concluded that the highest value of throughput when network conditions are normal, the greatest value of packet loss when there is a black hole attack, the highest end to end delay value and the largest remaining energy when there is a flooding attack.
2021-03-01
Saputra, R., Andika, J., Alaydrus, M..  2020.  Detection of Blackhole Attack in Wireless Sensor Network Using Enhanced Check Agent. 2020 Fifth International Conference on Informatics and Computing (ICIC). :1–4.

Wireless Sensor Network (WSN) is a heterogeneous type of network consisting of scattered sensor nodes and working together for data collection, processing, and transmission functions[1], [2]. Because WSN is widely used in vital matters, aspects of its security must also be considered. There are many types of attacks that might be carried out to disrupt WSN networks. The methods of attack that exist in WSN include jamming attack, tampering, Sybil attack, wormhole attack, hello flood attack, and, blackhole attack[3]. Blackhole attacks are one of the most dangerous attacks on WSN networks. Enhanced Check Agent method is designed to detect black hole attacks by sending a checking agent to record nodes that are considered black okay. The implementation will be tested right on a wireless sensor network using ZigBee technology. Network topology uses a mesh where each node can have more than one routing table[4]. The Enhanced Check Agent method can increase throughput to 100 percent.

2020-12-14
Pandey, S., Singh, V..  2020.  Blackhole Attack Detection Using Machine Learning Approach on MANET. 2020 International Conference on Electronics and Sustainable Communication Systems (ICESC). :797–802.

Mobile Ad-hoc Network (MANET) consists of different configurations, where it deals with the dynamic nature of its creation and also it is a self-configurable type of a network. The primary task in this type of networks is to develop a mechanism for routing that gives a high QoS parameter because of the nature of ad-hoc network. The Ad-hoc-on-Demand Distance Vector (AODV) used here is the on-demand routing mechanism for the computation of the trust. The proposed approach uses the Artificial neural network (ANN) and the Support Vector Machine (SVM) for the discovery of the black hole attacks in the network. The results are carried out between the black hole AODV and the security mechanism provided by us as the Secure AODV (SAODV). The results were tested on different number of nodes, at last, it has been experimented for 100 nodes which provide an improvement in energy consumption of 54.72%, the throughput is 88.68kbps, packet delivery ratio is 92.91% and the E to E delay is of about 37.27ms.

2020-10-29
Noguchi, Taku, Hayakawa, Mayuko.  2018.  Black Hole Attack Prevention Method Using Multiple RREPs in Mobile Ad Hoc Networks. 2018 17th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/ 12th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :539—544.

A mobile ad hoc network (MANET) is a collection of mobile nodes that do not need to rely on a pre-existing network infrastructure or centralized administration. Securing MANETs is a serious concern as current research on MANETs continues to progress. Each node in a MANET acts as a router, forwarding data packets for other nodes and exchanging routing information between nodes. It is this intrinsic nature that introduces the serious security issues to routing protocols. A black hole attack is one of the well-known security threats for MANETs. A black hole is a security attack in which a malicious node absorbs all data packets by sending fake routing information and drops them without forwarding them. In order to defend against a black hole attack, in this paper we propose a new threshold-based black hole attack prevention method using multiple RREPs. To investigate the performance of the proposed method, we compared it with existing methods. Our simulation results show that the proposed method outperforms existing methods from the standpoints of packet delivery rate, throughput, and routing overhead.

Sajyth, RB, Sujatha, G.  2018.  Design of Data Confidential and Reliable Bee Clustering Routing Protocol in MANET. 2018 International Conference on Computer Communication and Informatics (ICCCI). :1—7.
Mobile ad hoc network (MANET) requires extraneous energy effectualness and legion intelligence for which a best clustered based approach is pertained called the “Bee-Ad Hoc-C”. In MANET the mechanism of multi-hop routing is imperative but may leads to a challenging issue like lack of data privacy during communication. ECC (Elliptical Curve Cryptography) is integrated with the Bee clustering approach to provide an energy efficient and secure data delivery system. Even though it ensures data confidentiality, data reliability is still disputable such as data dropping attack, Black hole attack (Attacker router drops the data without forwarding to destination). In such cases the technique of overhearing is utilized by the neighbor routers and the packet forwarding statistics are measured based on the ratio between the received and forwarded packets. The presence of attack is detected if the packet forwarding ratio is poor in the network which paves a way to the alternate path identification for a reliable data transmission. The proposed work is an integration of SC-AODV along with ECC in Bee clustering approach with an extra added overhearing technique which n on the whole ensures data confidentiality, data reliability and energy efficiency.
Tomar, Ravi, Awasthi, Yogesh.  2019.  Prevention Techniques Employed in Wireless Ad-Hoc Networks. 2019 International Conference on Advanced Science and Engineering (ICOASE). :192—197.
The paper emphasizes the various aspects of ad-hoc networks. The different types of attacks that affect the system and are prevented by various algorithms mentioned in this paper. Since Ad-hoc wireless networks have no infrastructure and are always unreliable therefore they are subject to many attacks. The black hole attack is seen as one of the dangerous attacks of them. In this attack the malicious node usually absorbs each data packets that are similar to separate holes in everything. Likewise all packets in the network are dropped. For this reason various prevention measures should be employed in the form of routing finding first then the optimization followed by the classification.
Hossain, Sazzat, Hussain, Md. Sazzad, Ema, Romana Rahman, Dutta, Songita, Sarkar, Suborna, Islam, Tajul.  2019.  Detecting Black hole attack by selecting appropriate routes for authentic message passing using SHA-3 and Diffie-Hellman algorithm in AODV and AOMDV routing protocols in MANET. 2019 10th International Conference on Computing, Communication and Networking Technologies (ICCCNT). :1—7.
Ad hoc network is sensitive to attacks because it has temporary nature and frequently recognized insecure environment. Both Ad hoc On-demand Distance Vector (AODV) and Ad hoc On-demand Multipath Distance vector (AOMDV) routing protocols have the strategy to take help from Wireless and mobile ad hoc networks. A mobile ad hoc network (MANET) is recognized as an useful internet protocol and where the mobile nodes are self-configuring and self-organizing in character. This research paper has focused on the detection and influence of black hole attack on the execution of AODV and AOMDV routing protocols and has also evaluated the performance of those two on-demand routing protocols in MANETs. AODV has the characteristics for discovering a single path in single route discovery and AOMDV has the characteristics for discovering multiple paths in single route discovery. Here a proposed method for both AODV and AOMDV routing protocol, has been applied for the detection of the black hole attack, which is the merge of both SHA-3 and Diffie-Hellman algorithm. This merge technique has been applied to detect black hole attack in MANET. This technique has been applied to measure the performance matrices for both AODV and AOMDV and those performance matrices are Average Throughput, Average End to End delay and Normalized Routing Load. Both AODV and AOMDV routing protocol have been compared with each other to show that under black hole attack, AOMDV protocol always has better execution than AODV protocol. Here, NS-2.35 has been used as the Network Simulator tool for the simulation of these particular three types of performance metrics stated above.
2020-06-01
Sivanesh, S., Sarma Dhulipala, V.R..  2019.  Comparitive Analysis of Blackhole and Rushing Attack in MANET. 2019 TEQIP III Sponsored International Conference on Microwave Integrated Circuits, Photonics and Wireless Networks (IMICPW). :495—499.

For the past few decades, mobile ad hoc networks (MANETs) have been a global trend in wireless networking technology. These kind of ad-hoc networks are infrastructure less, dynamic in topology and further doesn't have a centralized network administration which makes it easier for the intruders to launch several attacks on MANETs. In this paper, we have made a comparative analysis of the network layer attack by simulating rushing and black hole attack using NS-2 network simulator. For determining the most vulnerable attack we have considered packet delivery ratio, end to end delay and throughput as a evaluation metrices. Here, AODV routing protocol has been configured for data forwarding operations. From our Simulation result, it is evident that the black hole attack is more vulnerable when compared to the rushing attack.

2020-05-26
Tripathi, Shripriya.  2019.  Performance Analysis of AODV and DSR Routing Protocols of MANET under Wormhole Attack and a Suggested Trust Based Routing Algorithm for DSR. 2019 IEEE International WIE Conference on Electrical and Computer Engineering (WIECON-ECE). :1–5.

The nodes in Mobile Ad hoc Network (MANET) can self-assemble themselves, locomote unreservedly and can interact with one another without taking any help from a centralized authority or fixed infrastructure. Due to its continuously changing and self-organizing nature, MANET is vulnerable to a variety of attacks like spoofing attack, wormhole attack, black hole attack, etc. This paper compares and analyzes the repercussion of the wormhole attack on MANET's two common routing protocols of reactive category, specifically, Dynamic Source Routing (DSR) and Ad-hoc On-Demand Distance Vector (AODV) by increasing the number of wormhole tunnels in MANET. The results received by simulation will reveal that DSR is greatly affected by this attack. So, as a solution, a routing algorithm for DSR which is based on trust is proposed to prevent the routes from caching malicious nodes.

Satav, Pravin R, Jawandhiya, Pradeep M., Thakare, Vilas M..  2018.  Secure Route Selection Mechanism in the Presence of Black Hole Attack with AOMDV Routing Algorithm. 2018 Fourth International Conference on Computing Communication Control and Automation (ICCUBEA). :1–6.
The research in MANET has been carried out for the development of various techniques which will increase the competency of the network only. A plenty number of proposed routing protocols are magnificent in terms of efficiency. However, proposed protocols were generally fulfilling the set of trusted network and not considered for adversarial network setting, hence there is no security mechanism has been considered. MANET is widely used in sensitive fields like battlefield, police rescue operation and many more in such type of sensitive field an attacker may try to gather information about the conversation starting from the origin node to the terminal node. Secure route selection approach for route selection in adverse environment is discussed in this article. The results shows that proposed algorithm, will resolve the single & collaborative attack by increasing the computational & storage overhead and by improving the significant PDR, achieves a noticeable enhancement in the end to end delay.
2019-08-05
Ghugar, U., Pradhan, J..  2018.  NL-IDS: Trust Based Intrusion Detection System for Network Layer in Wireless Sensor Networks. 2018 Fifth International Conference on Parallel, Distributed and Grid Computing (PDGC). :512-516.

From the last few years, security in wireless sensor network (WSN) is essential because WSN application uses important information sharing between the nodes. There are large number of issues raised related to security due to open deployment of network. The attackers disturb the security system by attacking the different protocol layers in WSN. The standard AODV routing protocol faces security issues when the route discovery process takes place. The data should be transmitted in a secure path to the destination. Therefore, to support the process we have proposed a trust based intrusion detection system (NL-IDS) for network layer in WSN to detect the Black hole attackers in the network. The sensor node trust is calculated as per the deviation of key factor at the network layer based on the Black hole attack. We use the watchdog technique where a sensor node continuously monitors the neighbor node by calculating a periodic trust value. Finally, the overall trust value of the sensor node is evaluated by the gathered values of trust metrics of the network layer (past and previous trust values). This NL-IDS scheme is efficient to identify the malicious node with respect to Black hole attack at the network layer. To analyze the performance of NL-IDS, we have simulated the model in MATLAB R2015a, and the result shows that NL-IDS is better than Wang et al. [11] as compare of detection accuracy and false alarm rate.

2019-01-16
Adeniji, V. O., Sibanda, K..  2018.  Analysis of the effect of malicious packet drop attack on packet transmission in wireless mesh networks. 2018 Conference on Information Communications Technology and Society (ICTAS). :1–6.
Wireless mesh networks (WMNs) are known for possessing good attributes such as low up-front cost, easy network maintenance, and reliable service coverage. This has largely made them to be adopted in various environments such as; school campus networks, community networking, pervasive healthcare, office and home automation, emergency rescue operations and ubiquitous wireless networks. The routing nodes are equipped with self-organized and self-configuring capabilities. However, the routing mechanisms of WMNs depend on the collaboration of all participating nodes for reliable network performance. The authors of this paper have noted that most routing algorithms proposed for WMNs in the last few years are designed with the assumption that all the participating nodes will collaboratively be involved in relaying the data packets originated from a source to a multi-hop destination. Such design approach however exposes WMNs to vulnerability such as malicious packet drop attack. This paper presents an evaluation of the effect of the black hole attack with other influential factors in WMNs. In this study, NS-3 simulator was used with AODV as the routing protocol. The results show that the packet delivery ratio and throughput of WMN under attack decreases sharply as compared to WMN free from attack. On an average, 47.41% of the transmitted data packets were dropped in presence of black hole attack.
2018-06-20
Mistry, M., Tandel, P., Reshamwala, V..  2017.  Mitigating techniques of black hole attack in MANET: A review. 2017 International Conference on Trends in Electronics and Informatics (ICEI). :554–557.

A Mobile Ad-hoc Network (MANET) is infrastructure-less network where nodes can move arbitrary in any place without the help of any fixed infrastructure. Due to the vague limit, no centralized administrator, dynamic topology and wireless connections it is powerless against various types of assaults. MANET has more threat contrast to any other conventional networks. AODV (Ad-hoc On-demand Distance Vector) is most utilized well-known routing protocol in MANET. AODV protocol is scared by "Black Hole" attack. A black hole attack is a serious assault that can be effortlessly employed towards AODV protocol. A black hole node that incorrectly replies for each path requests while not having active path to targeted destination and drops all the packets that received from other node. If these malicious nodes cooperate with every other as a set then the harm will be very extreme. In this paper, present review on various existing techniques for detection and mitigation of black hole attacks.

Yadav, S., Trivedi, M. C., Singh, V. K., Kolhe, M. L..  2017.  Securing AODV routing protocol against black hole attack in MANET using outlier detection scheme. 2017 4th IEEE Uttar Pradesh Section International Conference on Electrical, Computer and Electronics (UPCON). :1–4.

Imposing security in MANET is very challenging and hot topic of research science last two decades because of its wide applicability in applications like defense. Number of efforts has been made in this direction. But available security algorithms, methods, models and framework may not completely solve this problem. Motivated from various existing security methods and outlier detection, in this paper novel simple but efficient outlier detection scheme based security algorithm is proposed to protect the Ad hoc on demand distance vector (AODV) reactive routing protocol from Black hole attack in mobile ad hoc environment. Simulation results obtained from network simulator tool evident the simplicity, robustness and effectiveness of the proposed algorithm over the original AODV protocol and existing methods.

Dhende, S., Musale, S., Shirbahadurkar, S., Najan, A..  2017.  SAODV: Black hole and gray hole attack detection protocol in MANETs. 2017 International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET). :2391–2394.

A MANET is a group of wireless mobile nodes which cooperate in forwarding packets over a wireless links. Due to the lack of an infrastructure and open nature of MANET, security has become an essential and challenging issue. The mobile nature and selfishness of malicious node is a critical issue in causing the security problem. The MANETs are more defenseless to the security attacks; some of them are black hole and gray hole attacks. One of its key challenges is to find black hole attack. In this paper, researchers propose a secure AODV protocol (SAODV) for detection and removal of black hole and gray hole attacks in MANTEs. The proposed method is simulated using NS-2 and it seems that the proposed methodology is more secure than the existing one.

2015-05-06
Soleimani, M.T., Kahvand, M..  2014.  Defending packet dropping attacks based on dynamic trust model in wireless ad hoc networks. Mediterranean Electrotechnical Conference (MELECON), 2014 17th IEEE. :362-366.

Rapid advances in wireless ad hoc networks lead to increase their applications in real life. Since wireless ad hoc networks have no centralized infrastructure and management, they are vulnerable to several security threats. Malicious packet dropping is a serious attack against these networks. In this attack, an adversary node tries to drop all or partial received packets instead of forwarding them to the next hop through the path. A dangerous type of this attack is called black hole. In this attack, after absorbing network traffic by the malicious node, it drops all received packets to form a denial of service (DOS) attack. In this paper, a dynamic trust model to defend network against this attack is proposed. In this approach, a node trusts all immediate neighbors initially. Getting feedback from neighbors' behaviors, a node updates the corresponding trust value. The simulation results by NS-2 show that the attack is detected successfully with low false positive probability.