Biström, Dennis, Westerlund, Magnus, Duncan, Bob, Jaatun, Martin Gilje.
2022.
Privacy and security challenges for autonomous agents : A study of two social humanoid service robots. 2022 IEEE International Conference on Cloud Computing Technology and Science (CloudCom). :230–237.
The development of autonomous agents have gained renewed interest, largely due to the recent successes of machine learning. Social robots can be considered a special class of autonomous agents that are often intended to be integrated into sensitive environments. We present experiences from our work with two specific humanoid social service robots, and highlight how eschewing privacy and security by design principles leads to implementations with serious privacy and security flaws. The paper introduces the robots as platforms and their associated features, ecosystems and cloud platforms that are required for certain use cases or tasks. The paper encourages design aims for privacy and security, and then in this light studies the implementation from two different manufacturers. The results show a worrisome lack of design focus in handling privacy and security. The paper aims not to cover all the security flaws and possible mitigations, but does look closer into the use of the WebSocket protocol and it’s challenges when used for operational control. The conclusions of the paper provide insights on how manufacturers can rectify the discovered security flaws and presents key policies like accountability when it comes to implementing technical features of autonomous agents.
ISSN: 2330-2186
Alam, Mahfooz, Shahid, Mohammad, Mustajab, Suhel.
2022.
Security Oriented Deadline Aware Workflow Allocation Strategy for Infrastructure as a Service Clouds. 2022 3rd International Conference on Computation, Automation and Knowledge Management (ICCAKM). :1–6.
Cloud computing is a model of service provisioning in heterogeneous distributed systems that encourages many researchers to explore its benefits and drawbacks in executing workflow applications. Recently, high-quality security protection has been a new challenge in workflow allocation. Different tasks may and may not have varied security demands, security overhead may vary for different virtual machines (VMs) at which the task is assigned. This paper proposes a Security Oriented Deadline-Aware workflow allocation (SODA) strategy in an IaaS cloud environment to minimize the risk probability of the workflow tasks while considering the deadline met in a deterministic environment. SODA picks out the task based on the highest security upward rank and assigns the selected task to the trustworthy VMs. SODA tries to simultaneously satisfy each task’s security demand and deadline at the maximum possible level. The simulation studies show that SODA outperforms the HEFT strategy on account of the risk probability of the cloud system on scientific workflow, namely CyberShake.
Liu, Xuanyu, Cheng, Guozhen, Wang, Yawen, Zhang, Shuai.
2022.
Overview of Scientific Workflow Security Scheduling in Clouds. 2021 International Conference on Advanced Computing and Endogenous Security. :1–6.
With the development of cloud computing technology, more and more scientific researchers choose to deliver scientific workflow tasks to public cloud platforms for execution. This mode effectively reduces scientific research costs while also bringing serious security risks. In response to this problem, this article summarizes the current security issues facing cloud scientific workflows, and analyzes the importance of studying cloud scientific workflow security issues. Then this article analyzes, summarizes and compares the current cloud scientific workflow security methods from three perspectives: system architecture, security model, and security strategy. Finally made a prospect for the future development direction.
Chen, Di.
2022.
Practice on the Data Service of University Scientific Research Management Based on Cloud Computing. 2022 World Automation Congress (WAC). :424–428.
With the continuous development of computer technology, the coverage of informatization solutions covers all walks of life and all fields of society. For colleges and universities, teaching and scientific research are the basic tasks of the school. The scientific research ability of the school will affect the level of teachers and the training of students. The establishment of a good scientific research environment has become a more important link in the development of universities. SR(Scientific research) data is a prerequisite for SR activities. High-quality SR management data services are conducive to ensuring the quality and safety of SRdata, and further assisting the smooth development of SR projects. Therefore, this article mainly conducts research and practice on cloud computing-based scientific research management data services in colleges and universities. First, analyze the current situation of SR data management in colleges and universities, and the results show that the popularity of SR data management in domestic universities is much lower than that of universities in Europe and the United States, and the data storage awareness of domestic researchers is relatively weak. Only 46% of schools have developed SR data management services, which is much lower than that of European and American schools. Second, analyze the effect of CC(cloud computing )on the management of SR data in colleges and universities. The results show that 47% of SR believe that CC is beneficial to the management of SR data in colleges and universities to reduce scientific research costs and improve efficiency, the rest believe that CC can speed up data storage and improve security by acting on SR data management in colleges and universities.
ISSN: 2154-4824
Alyas, Tahir, Ateeq, Karamath, Alqahtani, Mohammed, Kukunuru, Saigeeta, Tabassum, Nadia, Kamran, Rukshanda.
2022.
Security Analysis for Virtual Machine Allocation in Cloud Computing. 2022 International Conference on Cyber Resilience (ICCR). :1–9.
A huge number of cloud users and cloud providers are threatened of security issues by cloud computing adoption. Cloud computing is a hub of virtualization that provides virtualization-based infrastructure over physically connected systems. With the rapid advancement of cloud computing technology, data protection is becoming increasingly necessary. It's important to weigh the advantages and disadvantages of moving to cloud computing when deciding whether to do so. As a result of security and other problems in the cloud, cloud clients need more time to consider transitioning to cloud environments. Cloud computing, like any other technology, faces numerous challenges, especially in terms of cloud security. Many future customers are wary of cloud adoption because of this. Virtualization Technologies facilitates the sharing of recourses among multiple users. Cloud services are protected using various models such as type-I and type-II hypervisors, OS-level, and unikernel virtualization but also offer a variety of security issues. Unfortunately, several attacks have been built in recent years to compromise the hypervisor and take control of all virtual machines running above it. It is extremely difficult to reduce the size of a hypervisor due to the functions it offers. It is not acceptable for a safe device design to include a large hypervisor in the Trusted Computing Base (TCB). Virtualization is used by cloud computing service providers to provide services. However, using these methods entails handing over complete ownership of data to a third party. This paper covers a variety of topics related to virtualization protection, including a summary of various solutions and risk mitigation in VMM (virtual machine monitor). In this paper, we will discuss issues possible with a malicious virtual machine. We will also discuss security precautions that are required to handle malicious behaviors. We notice the issues of investigating malicious behaviors in cloud computing, give the scientific categorization and demonstrate the future headings. We've identified: i) security specifications for virtualization in Cloud computing, which can be used as a starting point for securing Cloud virtual infrastructure, ii) attacks that can be conducted against Cloud virtual infrastructure, and iii) security solutions to protect the virtualization environment from DDOS attacks.
Mahmood, Riyadh, Pennington, Jay, Tsang, Danny, Tran, Tan, Bogle, Andrea.
2022.
A Framework for Automated API Fuzzing at Enterprise Scale. 2022 IEEE Conference on Software Testing, Verification and Validation (ICST). :377–388.
Web-based Application Programming Interfaces (APIs) are often described using SOAP, OpenAPI, and GraphQL specifications. These specifications provide a consistent way to define web services and enable automated fuzz testing. As such, many fuzzers take advantage of these specifications. However, in an enterprise setting, the tools are usually installed and scaled by individual teams, leading to duplication of efforts. There is a need for an enterprise-wide fuzz testing solution to provide shared, cost efficient, off-nominal testing at scale where fuzzers can be plugged-in as needed. Internet cloud-based fuzz testing-as-a-service solutions mitigate scalability concerns but are not always feasible as they require artifacts to be uploaded to external infrastructure. Typically, corporate policies prevent sharing artifacts with third parties due to cost, intellectual property, and security concerns. We utilize API specifications and combine them with cluster computing elasticity to build an automated, scalable framework that can fuzz multiple apps at once and retain the trust boundary of the enterprise.
ISSN: 2159-4848
Islam, Tariqul, Hasan, Kamrul, Singh, Saheb, Park, Joon S..
2022.
A Secure and Decentralized Auditing Scheme for Cloud Ensuring Data Integrity and Fairness in Auditing. 2022 IEEE 9th International Conference on Cyber Security and Cloud Computing (CSCloud)/2022 IEEE 8th International Conference on Edge Computing and Scalable Cloud (EdgeCom). :74–79.
With the advent of cloud storage services many users tend to store their data in the cloud to save storage cost. However, this has lead to many security concerns, and one of the most important ones is ensuring data integrity. Public verification schemes are able to employ a third party auditor to perform data auditing on behalf of the user. But most public verification schemes are vulnerable to procrastinating auditors who may not perform auditing on time. These schemes do not have fair arbitration also, i.e. they lack a way to punish the malicious Cloud Service Provider (CSP) and compensate user whose data has been corrupted. On the other hand, CSP might be storing redundant data that could increase the storage cost for the CSP and computational cost of data auditing for the user. In this paper, we propose a Blockchain-based public auditing and deduplication scheme with a fair arbitration system against procrastinating auditors. The key idea requires auditors to record each verification using smart contract and store the result into a Blockchain as a transaction. Our scheme can detect and punish the procrastinating auditors and compensate users in the case of any data loss. Additionally, our scheme can detect and delete duplicate data that improve storage utilization and reduce the computational cost of data verification. Experimental evaluation demonstrates that our scheme is provably secure and does not incur overhead compared to the existing public auditing techniques while offering an additional feature of verifying the auditor’s performance.
ISSN: 2693-8928
Maddamsetty, Saketh, Tharwani, Ayush, Mishra, Debadatta.
2022.
MicroBlind: Flexible and Secure File System Middleware for Application Sandboxes. 2022 IEEE International Conference on Cloud Engineering (IC2E). :221–232.
Virtual machine (VM) based application sandboxes leverage strong isolation guarantees of virtualization techniques to address several security issues through effective containment of malware. Specifically, in end-user physical hosts, potentially vulnerable applications can be isolated from each other (and the host) using VM based sandboxes. However, sharing data across applications executing within different sandboxes is a non-trivial requirement for end-user systems because at the end of the day, all applications are used by the end-user owning the device. Existing file sharing techniques compromise the security or efficiency, especially considering lack of technical expertise of many end-users in the contemporary times. In this paper, we propose MicroBlind, a security hardened file sharing framework for virtualized sandboxes to support efficient data sharing across different application sandboxes. MicroBlind enables a simple file sharing management API for end users where the end user can orchestrate file sharing across different VM sandboxes in a secure manner. To demonstrate the efficacy of MicroBlind, we perform comprehensive empirical analysis against existing data sharing techniques (augmented for the sandboxing setup) and show that MicroBlind provides improved security and efficiency.
Ye, Kai Zhen.
2022.
Application and Parallel Sandbox Testing Architecture for Network Security Isolation based on Cloud Desktop. 2022 International Conference on Inventive Computation Technologies (ICICT). :879–882.
Network security isolation technology is an important means to protect the internal information security of enterprises. Generally, isolation is achieved through traditional network devices, such as firewalls and gatekeepers. However, the security rules are relatively rigid and cannot better meet the flexible and changeable business needs. Through the double sandbox structure created for each user, each user in the virtual machine is isolated from each other and security is ensured. By creating a virtual disk in a virtual machine as a user storage sandbox, and encrypting the read and write of the disk, the shortcomings of traditional network isolation methods are discussed, and the application of cloud desktop network isolation technology based on VMwarer technology in universities is expounded.
ISSN: 2767-7788
Abduljabbar, Mohammed, Alnajjar, Fady.
2022.
Web Platform for General Robot Controlling system. 2022 International Conference on Electrical and Computing Technologies and Applications (ICECTA). :109–112.
AbuSaif is a human-like social robot designed and built at the UAE University's Artificial Intelligence and Robotics Lab. AbuSaif was initially operated by a classical personal computer (PC), like most of the existing social robots. Thus, most of the robot's functionalities are limited to the capacity of that mounted PC. To overcome this, in this study, we propose a web-based platform that shall take the benefits of clustering in cloud computing. Our proposed platform will increase the operational capability and functionality of AbuSaif, especially those needed to operate artificial intelligence algorithms. We believe that the robot will become more intelligent and autonomous using our proposed web platform.
K, Devaki, L, Leena Jenifer.
2022.
Re-Encryption Model for Multi-Block Data Updates in Network Security. 2022 International Conference on Applied Artificial Intelligence and Computing (ICAAIC). :1331–1336.
Nowadays, online cloud storage networks can be accessed by third parties. Businesses that host large data centers buy or rent storage space from individuals who need to store their data. According to customer needs, data hub operators visualise the data and expose the cloud storage for storing data. Tangibly, the resources may wander around numerous servers. Data resilience is a prior need for all storage methods. For routines in a distributed data center, distributed removable code is appropriate. A safe cloud cache solution, AES-UCODR, is proposed to decrease I/O overheads for multi-block updates in proxy re-encryption systems. Its competence is evaluated using the real-world finance sector.
Erkert, Keith, Lamontagne, Andrew, Chen, Jereming, Cummings, John, Hoikka, Mitchell, Xu, Kuai, Wang, Feng.
2022.
An End-to-End System for Monitoring IoT Devices in Smart Homes. 2022 IEEE 19th Annual Consumer Communications & Networking Conference (CCNC). :929–930.
The technology advance and convergence of cyber physical systems, smart sensors, short-range wireless communications, cloud computing, and smartphone apps have driven the proliferation of Internet of things (IoT) devices in smart homes and smart industry. In light of the high heterogeneity of IoT system, the prevalence of system vulnerabilities in IoT devices and applications, and the broad attack surface across the entire IoT protocol stack, a fundamental and urgent research problem of IoT security is how to effectively collect, analyze, extract, model, and visualize the massive network traffic of IoT devices for understanding what is happening to IoT devices. Towards this end, this paper develops and demonstrates an end-to-end system with three key components, i.e., the IoT network traffic monitoring system via programmable home routers, the backend IoT traffic behavior analysis system in the cloud, and the frontend IoT visualization system via smartphone apps, for monitoring, analyzing and virtualizing network traffic behavior of heterogeneous IoT devices in smart homes. The main contributions of this demonstration paper is to present a novel system with an end-to-end process of collecting, analyzing and visualizing IoT network traffic in smart homes.
Ruwin R. Ratnayake, R.M., Abeysiriwardhena, G.D.N.D.K., Perera, G.A.J., Senarathne, Amila, Ponnamperuma, R., Ganegoda, B.A..
2022.
ARGUS – An Adaptive Smart Home Security Solution. 2022 4th International Conference on Advancements in Computing (ICAC). :459–464.
Smart Security Solutions are in high demand with the ever-increasing vulnerabilities within the IT domain. Adjusting to a Work-From-Home (WFH) culture has become mandatory by maintaining required core security principles. Therefore, implementing and maintaining a secure Smart Home System has become even more challenging. ARGUS provides an overall network security coverage for both incoming and outgoing traffic, a firewall and an adaptive bandwidth management system and a sophisticated CCTV surveillance capability. ARGUS is such a system that is implemented into an existing router incorporating cloud and Machine Learning (ML) technology to ensure seamless connectivity across multiple devices, including IoT devices at a low migration cost for the customer. The aggregation of the above features makes ARGUS an ideal solution for existing Smart Home System service providers and users where hardware and infrastructure is also allocated. ARGUS was tested on a small-scale smart home environment with a Raspberry Pi 4 Model B controller. Its intrusion detection system identified an intrusion with 96% accuracy while the physical surveillance system predicts the user with 81% accuracy.