Visible to the public Biblio

Found 1180 results

Filters: Keyword is cloud computing  [Clear All Filters]
2023-03-31
Xing, Zhiyi.  2022.  Security Policy System for Cloud Computing Education Big Data: Test based on DDos Large-Scale Distributed Environment. 2022 International Conference on Inventive Computation Technologies (ICICT). :1107–1110.

The big data platform based on cloud computing realizes the storage, analysis and processing of massive data, and provides users with more efficient, accurate and intelligent Internet services. Combined with the characteristics of college teaching resource sharing platform based on cloud computing mode, the multi-faceted security defense strategy of the platform is studied from security management, security inspection and technical means. In the detection module, the optimization of the support vector machine is realized, the detection period is determined, the DDoS data traffic characteristics are extracted, and the source ID blacklist is established; the triggering of the defense mechanism in the defense module, the construction of the forwarder forwarding queue and the forwarder forwarding capability are realized. Reallocation.

ISSN: 2767-7788

Vineela, A., Kasiviswanath, N., Bindu, C. Shoba.  2022.  Data Integrity Auditing Scheme for Preserving Security in Cloud based Big Data. 2022 6th International Conference on Intelligent Computing and Control Systems (ICICCS). :609–613.
Cloud computing has become an integral part of medical big data. The cloud has the capability to store the large data volumes has attracted more attention. The integrity and privacy of patient data are some of the issues that cloud-based medical big data should be addressed. This research work introduces data integrity auditing scheme for cloud-based medical big data. This will help minimize the risk of unauthorized access to the data. Multiple copies of the data are stored to ensure that it can be recovered quickly in case of damage. This scheme can also be used to enable doctors to easily track the changes in patients' conditions through a data block. The simulation results proved the effectiveness of the proposed scheme.
ISSN: 2768-5330
Habbak, Hany, Metwally, Khaled, Mattar, Ahmed Maher.  2022.  Securing Big Data: A Survey on Security Solutions. 2022 13th International Conference on Electrical Engineering (ICEENG). :145–149.
Big Data (BD) is the combination of several technologies which address the gathering, analyzing and storing of massive heterogeneous data. The tremendous spurt of the Internet of Things (IoT) and different technologies are the fundamental incentive behind this enduring development. Moreover, the analysis of this data requires high-performance servers for advanced and parallel data analytics. Thus, data owners with their limited capabilities may outsource their data to a powerful but untrusted environment, i.e., the Cloud. Furthermore, data analytic techniques performed on external cloud may arise various security intimidations regarding the confidentiality and the integrity of the aforementioned; transferred, analyzed, and stored data. To countermeasure these security issues and challenges, several techniques have been addressed. This survey paper aims to summarize and emphasize the security threats within Big Data framework, in addition, it is worth mentioning research work related to Big Data Analytics (BDA).
Du, Jikui.  2022.  Analysis of a Joint Data Security Architecture Integrating Artificial Intelligence and Cloud Computing in the Era of Big Data. 2022 4th International Conference on Smart Systems and Inventive Technology (ICSSIT). :988–991.
This article analyzes the analysis of the joint data security architecture that integrates artificial intelligence and cloud computing in the era of big data. The article discusses and analyzes the integrated applications of big data, artificial intelligence and cloud computing. As an important part of big data security protection, joint data security Protecting the technical architecture is not only related to the security of joint data in the big data era, but also has an important impact on the overall development of the data era. Based on this, the thesis takes the big data security and joint data security protection technical architecture as the research content, and through a simple explanation of big data security, it then conducts detailed research on the big data security and joint data security protection technical architecture from five aspects and thinking.
Luo, Xingqi, Wang, Haotian, Dong, Jinyang, Zhang, Chuan, Wu, Tong.  2022.  Achieving Privacy-preserving Data Sharing for Dual Clouds. 2022 IEEE International Conferences on Internet of Things (iThings) and IEEE Green Computing & Communications (GreenCom) and IEEE Cyber, Physical & Social Computing (CPSCom) and IEEE Smart Data (SmartData) and IEEE Congress on Cybermatics (Cybermatics). :139–146.
With the advent of the era of Internet of Things (IoT), the increasing data volume leads to storage outsourcing as a new trend for enterprises and individuals. However, data breaches frequently occur, bringing significant challenges to the privacy protection of the outsourced data management system. There is an urgent need for efficient and secure data sharing schemes for the outsourced data management infrastructure, such as the cloud. Therefore, this paper designs a dual-server-based data sharing scheme with data privacy and high efficiency for the cloud, enabling the internal members to exchange their data efficiently and securely. Dual servers guarantee that none of the servers can get complete data independently by adopting secure two-party computation. In our proposed scheme, if the data is destroyed when sending it to the user, the data will not be restored. To prevent the malicious deletion, the data owner adds a random number to verify the identity during the uploading procedure. To ensure data security, the data is transmitted in ciphertext throughout the process by using searchable encryption. Finally, the black-box leakage analysis and theoretical performance evaluation demonstrate that our proposed data sharing scheme provides solid security and high efficiency in practice.
Biswas, Ankur, K V, Pradeep, Kumar Pandey, Arvind, Kumar Shukla, Surendra, Raj, Tej, Roy, Abhishek.  2022.  Hybrid Access Control for Atoring Large Data with Security. 2022 International Interdisciplinary Humanitarian Conference for Sustainability (IIHC). :838–844.
Although the public cloud is known for its incredible capabilities, consumers cannot totally depend on cloud service providers to keep personal data because to the lack of client maneuverability. To protect privacy, data controllers outsourced encryption keys rather than providing information. Crypt - text to conduct out okay and founder access control and provide the encryption keys with others, innate quality Aes (CP-ABE) may be employed. This, however, falls short of effectively protecting against new dangers. The public cloud was unable to validate if a downloader could decode using a number of older methods. Therefore, these files should be accessible to everyone having access to a data storage. A malicious attacker may download hundreds of files in order to launch Economic Deny of Sustain (EDoS) attacks, greatly depleting the cloud resource. The user of cloud storage is responsible for paying the fee. Additionally, the public cloud serves as both the accountant and the payer of resource consumption costs, without offering data owners any information. Cloud infrastructure storage should assuage these concerns in practice. In this study, we provide a technique for resource accountability and defense against DoS attacks for encrypted cloud storage tanks. It uses black-box CP-ABE techniques and abides by the access policy of CP-arbitrary ABE. After presenting two methods for different parameters, speed and security evaluations are given.
2023-03-17
Chakraborty, Partha Sarathi, Kumar, Puspesh, Chandrawanshi, Mangesh Shivaji, Tripathy, Somanath.  2022.  BASDB: Blockchain assisted Secure Outsourced Database Search. 2022 IEEE International Conference on Blockchain and Distributed Systems Security (ICBDS). :1–6.
The outsourcing of databases is very popular among IT companies and industries. It acts as a solution for businesses to ensure availability of the data for their users. The solution of outsourcing the database is to encrypt the data in a form where the database service provider can perform relational operations over the encrypted database. At the same time, the associated security risk of data leakage prevents many potential industries from deploying it. In this paper, we present a secure outsourcing database search scheme (BASDB) with the use of a smart contract for search operation over index of encrypted database and storing encrypted relational database in the cloud. Our proposed scheme BASDB is a simple and practical solution for effective search on encrypted relations and is well resistant to information leakage against attacks like search and access pattern leakage.
Ayoub, Harith Ghanim.  2022.  Dynamic Iris-Based Key Generation Scheme during Iris Authentication Process. 2022 8th International Conference on Contemporary Information Technology and Mathematics (ICCITM). :364–368.
The robustness of the encryption systems in all of their types depends on the key generation. Thus, an encryption system can be said robust if the generated key(s) are very complex and random which prevent attackers or other analytical tools to break the encryption system. This paper proposed an enhanced key generation based on iris image as biometric, to be implemented dynamically in both of authentication process and data encryption. The captured iris image during the authentication process will be stored in a cloud server to be used in the next login to decrypt data. While in the current login, the previously stored iris image in the cloud server would be used to decrypt data in the current session. The results showed that the generated key meets the required randomness for several NIST tests that is reasonable for one use. The strength of the proposed approach produced unrepeated keys for encryption and each key will be used once. The weakness of the produced key may be enhanced to become more random.
ELMansy, Hossam, Metwally, Khaled, Badran, Khaled.  2022.  MPTCP-based Security Schema in Fog Computing. 2022 13th International Conference on Electrical Engineering (ICEENG). :134–138.

Recently, Cloud Computing became one of today’s great innovations for provisioning Information Technology (IT) resources. Moreover, a new model has been introduced named Fog Computing, which addresses Cloud Computing paradigm issues regarding time delay and high cost. However, security challenges are still a big concern about the vulnerabilities to both Cloud and Fog Computing systems. Man- in- the- Middle (MITM) is considered one of the most destructive attacks in a Fog Computing context. Moreover, it’s very complex to detect MiTM attacks as it is performed passively at the Software-Defined Networking (SDN) level, also the Fog Computing paradigm is ideally suitable for MITM attacks. In this paper, a MITM mitigation scheme will be proposed consisting of an SDN network (Fog Leaders) which controls a layer of Fog Nodes. Furthermore, Multi-Path TCP (MPTCP) has been used between all edge devices and Fog Nodes to improve resource utilization and security. The proposed solution performance evaluation has been carried out in a simulation environment using Mininet, Ryu SDN controller and Multipath TCP (MPTCP) Linux kernel. The experimental results showed that the proposed solution improves security, network resiliency and resource utilization without any significant overheads compared to the traditional TCP implementation.

2023-03-03
Nolte, Hendrik, Sabater, Simon Hernan Sarmiento, Ehlers, Tim, Kunkel, Julian.  2022.  A Secure Workflow for Shared HPC Systems. 2022 22nd IEEE International Symposium on Cluster, Cloud and Internet Computing (CCGrid). :965–974.
Driven by the progress of data and compute-intensive methods in various scientific domains, there is an in-creasing demand from researchers working with highly sensitive data to have access to the necessary computational resources to be able to adapt those methods in their respective fields. To satisfy the computing needs of those researchers cost-effectively, it is an open quest to integrate reliable security measures on existing High Performance Computing (HPC) clusters. The fundamental problem with securely working with sensitive data is, that HPC systems are shared systems that are typically trimmed for the highest performance - not for high security. For instance, there are commonly no additional virtualization techniques employed, thus, users typically have access to the host operating system. Since new vulnerabilities are being continuously discovered, solely relying on the traditional Unix permissions is not secure enough. In this paper, we discuss a generic and secure workflow that can be implemented on typical HPC systems allowing users to transfer, store and analyze sensitive data. In our experiments, we see an advantage in the asynchronous execution of IO requests, while reaching 80 % of the ideal performance.
2023-02-28
El. zuway, Mona A., Farkash, Hend M..  2022.  Internet of Things Security: Requirements, Attacks on SH-IoT Platform. 2022 IEEE 21st international Ccnference on Sciences and Techniques of Automatic Control and Computer Engineering (STA). :742—747.
Smart building security systems typically consist of sensors and controllers that monitor power operating systems, alarms, camera monitoring, access controls, and many other important information and security systems. These systems are managed and controlled through online platforms. A successful attack on one of these platforms may result in the failure of one or more critical intelligent systems in the building. In this paper, the security requirements in the application layer of any IoT system were discussed, in particular the role of IoT platforms in dealing with the security problems that smart buildings are exposed to and the extent of their strength to reduce the attacks they are exposed to, where an experimental platform was designed to test the presence of security vulnerabilities and This was done by using the Zed Attack Proxy (ZAP) tool, according to the OWASP standards and security level assessment, and the importance of this paper comes as a contribution to providing information about the most famous IoT platforms and stimulating work to explore security concerns in IoT-based platforms.
2023-02-17
Biström, Dennis, Westerlund, Magnus, Duncan, Bob, Jaatun, Martin Gilje.  2022.  Privacy and security challenges for autonomous agents : A study of two social humanoid service robots. 2022 IEEE International Conference on Cloud Computing Technology and Science (CloudCom). :230–237.
The development of autonomous agents have gained renewed interest, largely due to the recent successes of machine learning. Social robots can be considered a special class of autonomous agents that are often intended to be integrated into sensitive environments. We present experiences from our work with two specific humanoid social service robots, and highlight how eschewing privacy and security by design principles leads to implementations with serious privacy and security flaws. The paper introduces the robots as platforms and their associated features, ecosystems and cloud platforms that are required for certain use cases or tasks. The paper encourages design aims for privacy and security, and then in this light studies the implementation from two different manufacturers. The results show a worrisome lack of design focus in handling privacy and security. The paper aims not to cover all the security flaws and possible mitigations, but does look closer into the use of the WebSocket protocol and it’s challenges when used for operational control. The conclusions of the paper provide insights on how manufacturers can rectify the discovered security flaws and presents key policies like accountability when it comes to implementing technical features of autonomous agents.
ISSN: 2330-2186
Alam, Mahfooz, Shahid, Mohammad, Mustajab, Suhel.  2022.  Security Oriented Deadline Aware Workflow Allocation Strategy for Infrastructure as a Service Clouds. 2022 3rd International Conference on Computation, Automation and Knowledge Management (ICCAKM). :1–6.
Cloud computing is a model of service provisioning in heterogeneous distributed systems that encourages many researchers to explore its benefits and drawbacks in executing workflow applications. Recently, high-quality security protection has been a new challenge in workflow allocation. Different tasks may and may not have varied security demands, security overhead may vary for different virtual machines (VMs) at which the task is assigned. This paper proposes a Security Oriented Deadline-Aware workflow allocation (SODA) strategy in an IaaS cloud environment to minimize the risk probability of the workflow tasks while considering the deadline met in a deterministic environment. SODA picks out the task based on the highest security upward rank and assigns the selected task to the trustworthy VMs. SODA tries to simultaneously satisfy each task’s security demand and deadline at the maximum possible level. The simulation studies show that SODA outperforms the HEFT strategy on account of the risk probability of the cloud system on scientific workflow, namely CyberShake.
Liu, Xuanyu, Cheng, Guozhen, Wang, Yawen, Zhang, Shuai.  2022.  Overview of Scientific Workflow Security Scheduling in Clouds. 2021 International Conference on Advanced Computing and Endogenous Security. :1–6.
With the development of cloud computing technology, more and more scientific researchers choose to deliver scientific workflow tasks to public cloud platforms for execution. This mode effectively reduces scientific research costs while also bringing serious security risks. In response to this problem, this article summarizes the current security issues facing cloud scientific workflows, and analyzes the importance of studying cloud scientific workflow security issues. Then this article analyzes, summarizes and compares the current cloud scientific workflow security methods from three perspectives: system architecture, security model, and security strategy. Finally made a prospect for the future development direction.
Chen, Di.  2022.  Practice on the Data Service of University Scientific Research Management Based on Cloud Computing. 2022 World Automation Congress (WAC). :424–428.
With the continuous development of computer technology, the coverage of informatization solutions covers all walks of life and all fields of society. For colleges and universities, teaching and scientific research are the basic tasks of the school. The scientific research ability of the school will affect the level of teachers and the training of students. The establishment of a good scientific research environment has become a more important link in the development of universities. SR(Scientific research) data is a prerequisite for SR activities. High-quality SR management data services are conducive to ensuring the quality and safety of SRdata, and further assisting the smooth development of SR projects. Therefore, this article mainly conducts research and practice on cloud computing-based scientific research management data services in colleges and universities. First, analyze the current situation of SR data management in colleges and universities, and the results show that the popularity of SR data management in domestic universities is much lower than that of universities in Europe and the United States, and the data storage awareness of domestic researchers is relatively weak. Only 46% of schools have developed SR data management services, which is much lower than that of European and American schools. Second, analyze the effect of CC(cloud computing )on the management of SR data in colleges and universities. The results show that 47% of SR believe that CC is beneficial to the management of SR data in colleges and universities to reduce scientific research costs and improve efficiency, the rest believe that CC can speed up data storage and improve security by acting on SR data management in colleges and universities.
ISSN: 2154-4824
Alyas, Tahir, Ateeq, Karamath, Alqahtani, Mohammed, Kukunuru, Saigeeta, Tabassum, Nadia, Kamran, Rukshanda.  2022.  Security Analysis for Virtual Machine Allocation in Cloud Computing. 2022 International Conference on Cyber Resilience (ICCR). :1–9.
A huge number of cloud users and cloud providers are threatened of security issues by cloud computing adoption. Cloud computing is a hub of virtualization that provides virtualization-based infrastructure over physically connected systems. With the rapid advancement of cloud computing technology, data protection is becoming increasingly necessary. It's important to weigh the advantages and disadvantages of moving to cloud computing when deciding whether to do so. As a result of security and other problems in the cloud, cloud clients need more time to consider transitioning to cloud environments. Cloud computing, like any other technology, faces numerous challenges, especially in terms of cloud security. Many future customers are wary of cloud adoption because of this. Virtualization Technologies facilitates the sharing of recourses among multiple users. Cloud services are protected using various models such as type-I and type-II hypervisors, OS-level, and unikernel virtualization but also offer a variety of security issues. Unfortunately, several attacks have been built in recent years to compromise the hypervisor and take control of all virtual machines running above it. It is extremely difficult to reduce the size of a hypervisor due to the functions it offers. It is not acceptable for a safe device design to include a large hypervisor in the Trusted Computing Base (TCB). Virtualization is used by cloud computing service providers to provide services. However, using these methods entails handing over complete ownership of data to a third party. This paper covers a variety of topics related to virtualization protection, including a summary of various solutions and risk mitigation in VMM (virtual machine monitor). In this paper, we will discuss issues possible with a malicious virtual machine. We will also discuss security precautions that are required to handle malicious behaviors. We notice the issues of investigating malicious behaviors in cloud computing, give the scientific categorization and demonstrate the future headings. We've identified: i) security specifications for virtualization in Cloud computing, which can be used as a starting point for securing Cloud virtual infrastructure, ii) attacks that can be conducted against Cloud virtual infrastructure, and iii) security solutions to protect the virtualization environment from DDOS attacks.
Mahmood, Riyadh, Pennington, Jay, Tsang, Danny, Tran, Tan, Bogle, Andrea.  2022.  A Framework for Automated API Fuzzing at Enterprise Scale. 2022 IEEE Conference on Software Testing, Verification and Validation (ICST). :377–388.
Web-based Application Programming Interfaces (APIs) are often described using SOAP, OpenAPI, and GraphQL specifications. These specifications provide a consistent way to define web services and enable automated fuzz testing. As such, many fuzzers take advantage of these specifications. However, in an enterprise setting, the tools are usually installed and scaled by individual teams, leading to duplication of efforts. There is a need for an enterprise-wide fuzz testing solution to provide shared, cost efficient, off-nominal testing at scale where fuzzers can be plugged-in as needed. Internet cloud-based fuzz testing-as-a-service solutions mitigate scalability concerns but are not always feasible as they require artifacts to be uploaded to external infrastructure. Typically, corporate policies prevent sharing artifacts with third parties due to cost, intellectual property, and security concerns. We utilize API specifications and combine them with cluster computing elasticity to build an automated, scalable framework that can fuzz multiple apps at once and retain the trust boundary of the enterprise.
ISSN: 2159-4848
Islam, Tariqul, Hasan, Kamrul, Singh, Saheb, Park, Joon S..  2022.  A Secure and Decentralized Auditing Scheme for Cloud Ensuring Data Integrity and Fairness in Auditing. 2022 IEEE 9th International Conference on Cyber Security and Cloud Computing (CSCloud)/2022 IEEE 8th International Conference on Edge Computing and Scalable Cloud (EdgeCom). :74–79.
With the advent of cloud storage services many users tend to store their data in the cloud to save storage cost. However, this has lead to many security concerns, and one of the most important ones is ensuring data integrity. Public verification schemes are able to employ a third party auditor to perform data auditing on behalf of the user. But most public verification schemes are vulnerable to procrastinating auditors who may not perform auditing on time. These schemes do not have fair arbitration also, i.e. they lack a way to punish the malicious Cloud Service Provider (CSP) and compensate user whose data has been corrupted. On the other hand, CSP might be storing redundant data that could increase the storage cost for the CSP and computational cost of data auditing for the user. In this paper, we propose a Blockchain-based public auditing and deduplication scheme with a fair arbitration system against procrastinating auditors. The key idea requires auditors to record each verification using smart contract and store the result into a Blockchain as a transaction. Our scheme can detect and punish the procrastinating auditors and compensate users in the case of any data loss. Additionally, our scheme can detect and delete duplicate data that improve storage utilization and reduce the computational cost of data verification. Experimental evaluation demonstrates that our scheme is provably secure and does not incur overhead compared to the existing public auditing techniques while offering an additional feature of verifying the auditor’s performance.
ISSN: 2693-8928
Maddamsetty, Saketh, Tharwani, Ayush, Mishra, Debadatta.  2022.  MicroBlind: Flexible and Secure File System Middleware for Application Sandboxes. 2022 IEEE International Conference on Cloud Engineering (IC2E). :221–232.
Virtual machine (VM) based application sandboxes leverage strong isolation guarantees of virtualization techniques to address several security issues through effective containment of malware. Specifically, in end-user physical hosts, potentially vulnerable applications can be isolated from each other (and the host) using VM based sandboxes. However, sharing data across applications executing within different sandboxes is a non-trivial requirement for end-user systems because at the end of the day, all applications are used by the end-user owning the device. Existing file sharing techniques compromise the security or efficiency, especially considering lack of technical expertise of many end-users in the contemporary times. In this paper, we propose MicroBlind, a security hardened file sharing framework for virtualized sandboxes to support efficient data sharing across different application sandboxes. MicroBlind enables a simple file sharing management API for end users where the end user can orchestrate file sharing across different VM sandboxes in a secure manner. To demonstrate the efficacy of MicroBlind, we perform comprehensive empirical analysis against existing data sharing techniques (augmented for the sandboxing setup) and show that MicroBlind provides improved security and efficiency.
Ye, Kai Zhen.  2022.  Application and Parallel Sandbox Testing Architecture for Network Security Isolation based on Cloud Desktop. 2022 International Conference on Inventive Computation Technologies (ICICT). :879–882.
Network security isolation technology is an important means to protect the internal information security of enterprises. Generally, isolation is achieved through traditional network devices, such as firewalls and gatekeepers. However, the security rules are relatively rigid and cannot better meet the flexible and changeable business needs. Through the double sandbox structure created for each user, each user in the virtual machine is isolated from each other and security is ensured. By creating a virtual disk in a virtual machine as a user storage sandbox, and encrypting the read and write of the disk, the shortcomings of traditional network isolation methods are discussed, and the application of cloud desktop network isolation technology based on VMwarer technology in universities is expounded.
ISSN: 2767-7788
Abduljabbar, Mohammed, Alnajjar, Fady.  2022.  Web Platform for General Robot Controlling system. 2022 International Conference on Electrical and Computing Technologies and Applications (ICECTA). :109–112.
AbuSaif is a human-like social robot designed and built at the UAE University's Artificial Intelligence and Robotics Lab. AbuSaif was initially operated by a classical personal computer (PC), like most of the existing social robots. Thus, most of the robot's functionalities are limited to the capacity of that mounted PC. To overcome this, in this study, we propose a web-based platform that shall take the benefits of clustering in cloud computing. Our proposed platform will increase the operational capability and functionality of AbuSaif, especially those needed to operate artificial intelligence algorithms. We believe that the robot will become more intelligent and autonomous using our proposed web platform.
K, Devaki, L, Leena Jenifer.  2022.  Re-Encryption Model for Multi-Block Data Updates in Network Security. 2022 International Conference on Applied Artificial Intelligence and Computing (ICAAIC). :1331–1336.
Nowadays, online cloud storage networks can be accessed by third parties. Businesses that host large data centers buy or rent storage space from individuals who need to store their data. According to customer needs, data hub operators visualise the data and expose the cloud storage for storing data. Tangibly, the resources may wander around numerous servers. Data resilience is a prior need for all storage methods. For routines in a distributed data center, distributed removable code is appropriate. A safe cloud cache solution, AES-UCODR, is proposed to decrease I/O overheads for multi-block updates in proxy re-encryption systems. Its competence is evaluated using the real-world finance sector.
Erkert, Keith, Lamontagne, Andrew, Chen, Jereming, Cummings, John, Hoikka, Mitchell, Xu, Kuai, Wang, Feng.  2022.  An End-to-End System for Monitoring IoT Devices in Smart Homes. 2022 IEEE 19th Annual Consumer Communications & Networking Conference (CCNC). :929–930.
The technology advance and convergence of cyber physical systems, smart sensors, short-range wireless communications, cloud computing, and smartphone apps have driven the proliferation of Internet of things (IoT) devices in smart homes and smart industry. In light of the high heterogeneity of IoT system, the prevalence of system vulnerabilities in IoT devices and applications, and the broad attack surface across the entire IoT protocol stack, a fundamental and urgent research problem of IoT security is how to effectively collect, analyze, extract, model, and visualize the massive network traffic of IoT devices for understanding what is happening to IoT devices. Towards this end, this paper develops and demonstrates an end-to-end system with three key components, i.e., the IoT network traffic monitoring system via programmable home routers, the backend IoT traffic behavior analysis system in the cloud, and the frontend IoT visualization system via smartphone apps, for monitoring, analyzing and virtualizing network traffic behavior of heterogeneous IoT devices in smart homes. The main contributions of this demonstration paper is to present a novel system with an end-to-end process of collecting, analyzing and visualizing IoT network traffic in smart homes.
Ruwin R. Ratnayake, R.M., Abeysiriwardhena, G.D.N.D.K., Perera, G.A.J., Senarathne, Amila, Ponnamperuma, R., Ganegoda, B.A..  2022.  ARGUS – An Adaptive Smart Home Security Solution. 2022 4th International Conference on Advancements in Computing (ICAC). :459–464.
Smart Security Solutions are in high demand with the ever-increasing vulnerabilities within the IT domain. Adjusting to a Work-From-Home (WFH) culture has become mandatory by maintaining required core security principles. Therefore, implementing and maintaining a secure Smart Home System has become even more challenging. ARGUS provides an overall network security coverage for both incoming and outgoing traffic, a firewall and an adaptive bandwidth management system and a sophisticated CCTV surveillance capability. ARGUS is such a system that is implemented into an existing router incorporating cloud and Machine Learning (ML) technology to ensure seamless connectivity across multiple devices, including IoT devices at a low migration cost for the customer. The aggregation of the above features makes ARGUS an ideal solution for existing Smart Home System service providers and users where hardware and infrastructure is also allocated. ARGUS was tested on a small-scale smart home environment with a Raspberry Pi 4 Model B controller. Its intrusion detection system identified an intrusion with 96% accuracy while the physical surveillance system predicts the user with 81% accuracy.
2023-02-13
Rupasri, M., Lakhanpal, Anupam, Ghosh, Soumalya, Hedage, Atharav, Bangare, Manoj L., Ketaraju, K. V. Daya Sagar.  2022.  Scalable and Adaptable End-To-End Collection and Analysis of Cloud Computing Security Data: Towards End-To-End Security in Cloud Computing Systems. 2022 2nd International Conference on Innovative Practices in Technology and Management (ICIPTM). 2:8—14.

Cloud computing provides customers with enormous compute power and storage capacity, allowing them to deploy their computation and data-intensive applications without having to invest in infrastructure. Many firms use cloud computing as a means of relocating and maintaining resources outside of their enterprise, regardless of the cloud server's location. However, preserving the data in cloud leads to a number of issues related to data loss, accountability, security etc. Such fears become a great barrier to the adoption of the cloud services by users. Cloud computing offers a high scale storage facility for internet users with reference to the cost based on the usage of facilities provided. Privacy protection of a user's data is considered as a challenge as the internal operations offered by the service providers cannot be accessed by the users. Hence, it becomes necessary for monitoring the usage of the client's data in cloud. In this research, we suggest an effective cloud storage solution for accessing patient medical records across hospitals in different countries while maintaining data security and integrity. In the suggested system, multifactor authentication for user login to the cloud, homomorphic encryption for data storage with integrity verification, and integrity verification have all been implemented effectively. To illustrate the efficacy of the proposed strategy, an experimental investigation was conducted.