Biblio
With the emergence of quantum computers, traditional digital signature schemes based on problems such as large integer solutions and discrete logarithms will no longer be secure, and it is urgent to find effective digital signature schemes that can resist quantum attacks. Lattice cryptography has the advantages of computational simplicity and high security. In this paper, we propose an identity-based digital signature scheme based on the rejection sampling algorithm. Unlike most schemes that use a common Gaussian distribution, this paper uses a bimodal Gaussian distribution, which improves efficiency. The identity-based signature scheme is more convenient for practical application than the traditional certificate-based signature scheme.
Keystroke dynamics is a behavioural biometric form of authentication based on the inherent typing behaviour of an individual. While this technique is gaining traction, protecting the privacy of the users is of utmost importance. Fully Homomorphic Encryption is a technique that allows performing computation on encrypted data, which enables processing of sensitive data in an untrusted environment. FHE is also known to be “future-proof” since it is a lattice-based cryptosystem that is regarded as quantum-safe. It has seen significant performance improvements over the years with substantially increased developer-friendly tools. We propose a neural network for keystroke analysis trained using differential privacy to speed up training while preserving privacy and predicting on encrypted data using FHE to keep the users' privacy intact while offering sufficient usability.
Security plays a major role in data transmission and reception. Providing high security is indispensable in communication systems. The RSA (Rivest-Shamir-Adleman) cryptosystem is used widely in cryptographic applications as it offers highly secured transmission. RSA cryptosystem uses Montgomery multipliers and it involves modular exponentiation process which is attained by performing repeated modular-multiplications. This leads to high latency and owing to improve the speed of multiplier, highly efficient modular multiplication methodology needs to be applied. In the conventional methodology, Carry Save Adder (CSA) is used in the multiplication and it consumes more area and it has larger delay, but in the suggested methodology, the Reverse Carry Propagate (RCP) adder is used in the place of CSA adder and the obtained output shows promising results in terms of area and latency. The simulation is done with Xilinx ISE design suite. The proposed multiplier can be used effectively in signal processing, image processing and security based applications.
The main objective of the proposed work is to build a reliable and secure architecture for cloud servers where users may safely store and transfer their data. This platform ensures secure communication between the client and the server during data transfer. Furthermore, it provides a safe method for sharing and transferring files from one person to another. As a result, for ensuring safe data on cloud servers, this research work presents a secure architecture combining three DNA cryptography, HMAC, and a third party Auditor. In order to provide security by utilizing various strategies, a number of traditional and novel cryptographic methods are investigated. In the first step, data will be encrypted with the help of DNA cryptography, where the encoded document will be stored in the cloud server. In next step, create a HMAC value of encrypted file, which was stored on cloud by using secret key and sends to TPA. In addition, Third Party Auditor is used for authenticate the purity of stored documents in cloud at the time of verification TPA also create HMAC value from Cloud stored data and verify it. DNA-based cryptographic technique, hash based message authentic code and third party auditor will provide more secured framework for data security and integrity in cloud server.