Biblio
This paper deals with the problem of image forgery detection because of the problems it causes. Where The Fake im-ages can lead to social problems, for example, misleading the public opinion on political or religious personages, de-faming celebrities and people, and Presenting them in a law court as evidence, may Doing mislead the court. This work proposes a deep learning approach based on Deep CNN (Convolutional Neural Network) Architecture, to detect fake images. The network is based on a modified structure of Xception net, CNN based on depthwise separable convolution layers. After extracting the feature maps, pooling layers are used with dense connection with Xception output, to in-crease feature maps. Inspired by the idea of a densenet network. On the other hand, the work uses the YCbCr color system for images, which gave better Accuracy of %99.93, more than RGB, HSV, and Lab or other color systems.
ISSN: 2831-753X
Onion Routing is an encrypted communication system developed by the U.S. Naval Laboratory that uses existing Internet equipment to communicate anonymously. Miscreants use this means to conduct illegal transactions in the dark web, posing a security risk to citizens and the country. For this means of anonymous communication, website fingerprinting methods have been used in existing studies. These methods often have high overhead and need to run on devices with high performance, which makes the method inflexible. In this paper, we propose a lightweight method to address the high overhead problem that deep learning website fingerprinting methods generally have, so that the method can be applied on common devices while also ensuring accuracy to a certain extent. The proposed method refers to the structure of Inception net, divides the original larger convolutional kernels into smaller ones, and uses group convolution to reduce the website fingerprinting and computation to a certain extent without causing too much negative impact on the accuracy. The method was experimented on the data set collected by Rimmer et al. to ensure the effectiveness.
This work analyzed the coding gain that is provided in 6LoWPAN transceivers when channel-coding methods are used. There were made improvements at physical layer of 6LoWPAN technology in the system suggested. Performance analysis was performed using turbo, LDPC and convolutional codes on IEEE 802.15.4 standard that is used in the relevant physical layer. Code rate of convolutional and turbo codes are set to 1/3 and 1/4. For LDPC codes, the code rate is set as 3/4 and 5/6. According to simulation results obtained from the MATLAB environment, turbo codes give better results than LDPC and convolutional codes. It is seen that an average of 3 dB to 8 dB gain is achieved in turbo codes, in LDPC and convolutional coding, it is observed that the gain is between 2 dB and 6 dB depending on the modulation type and code rate.