Visible to the public Biblio

Found 474 results

Filters: First Letter Of Title is B  [Clear All Filters]
2019-01-16
Khan, F., Quweider, M., Torres, M., Goldsmith, C., Lei, H., Zhang, L..  2018.  Block Level Streaming Based Alternative Approach for Serving a Large Number of Workstations Securely and Uniformly. 2018 1st International Conference on Data Intelligence and Security (ICDIS). :92–98.
There are different traditional approaches to handling a large number of computers or workstations in a campus setting, ranging from imaging to virtualized environments. The common factor among the traditional approaches is to have a user workstation with a local hard drive (nonvolatile storage), scratchpad volatile memory, a CPU (Central Processing Unit) and connectivity to access resources on the network. This paper presents the use of block streaming, normally used for storage, to serve operating system and applications on-demand over the network to a workstation, also referred to as a client, a client computer, or a client workstation. In order to avoid per seat licensing, an Open Source solution is used, and in order to minimize the field maintenance and meet security privacy constraints, a workstation need not have a permanent storage such as a hard disk drive. A complete blue print, based on performance analyses, is provided to determine the type of network architecture, servers, workstations per server, and minimum workstation configuration, suitable for supporting such a solution. The results of implementing the proposed solution campus wide, supporting more than 450 workstations, are presented as well.
Lewis, Stephen G., Palumbo, Timothy.  2018.  BitLocker Full-Disk Encryption: Four Years Later. Proceedings of the 2018 ACM on SIGUCCS Annual Conference. :147–150.
Microsoft BitLocker full-disk encryption has been widely implemented at Lehigh University since 2014 on both laptop and desktop computers. This retrospective review will summarize BitLocker's selection factors, initial testing, mass deployment, and important lessons learned. Additionally, this review will also discuss the university's transition to Windows 10 and how it positively impacted the use of BitLocker.
2018-12-10
Edge, Darren, Larson, Jonathan, White, Christopher.  2018.  Bringing AI to BI: Enabling Visual Analytics of Unstructured Data in a Modern Business Intelligence Platform. Extended Abstracts of the 2018 CHI Conference on Human Factors in Computing Systems. :CS02:1–CS02:9.

The Business Intelligence (BI) paradigm is challenged by emerging use cases such as news and social media analytics in which the source data are unstructured, the analysis metrics are unspecified, and the appropriate visual representations are unsupported by mainstream tools. This case study documents the work undertaken in Microsoft Research to enable these use cases in the Microsoft Power BI product. Our approach comprises: (a) back-end pipelines that use AI to infer navigable data structures from streams of unstructured text, media and metadata; and (b) front-end representations of these structures grounded in the Visual Analytics literature. Through our creation of multiple end-to-end data applications, we learned that representing the varying quality of inferred data structures was crucial for making the use and limitations of AI transparent to users. We conclude with reflections on BI in the age of AI, big data, and democratized access to data analytics.

Hashemi, Soheil, Tann, Hokchhay, Reda, Sherief.  2018.  BLASYS: Approximate Logic Synthesis Using Boolean Matrix Factorization. Proceedings of the 55th Annual Design Automation Conference. :55:1–55:6.

Approximate computing is an emerging paradigm where design accuracy can be traded off for benefits in design metrics such as design area, power consumption or circuit complexity. In this work, we present a novel paradigm to synthesize approximate circuits using Boolean matrix factorization (BMF). In our methodology the truth table of a sub-circuit of the design is approximated using BMF to a controllable approximation degree, and the results of the factorization are used to synthesize a less complex subcircuit. To scale our technique to large circuits, we devise a circuit decomposition method and a subcircuit design-space exploration technique to identify the best order for subcircuit approximations. Our method leads to a smooth trade-off between accuracy and full circuit complexity as measured by design area and power consumption. Using an industrial strength design flow, we extensively evaluate our methodology on a number of testcases, where we demonstrate that the proposed methodology can achieve up to 63% in power savings, while introducing an average relative error of 5%. We also compare our work to previous works in Boolean circuit synthesis and demonstrate significant improvements in design metrics for same accuracy targets.

Pewny, Jannik, Koppe, Philipp, Davi, Lucas, Holz, Thorsten.  2017.  Breaking and Fixing Destructive Code Read Defenses. Proceedings of the 33rd Annual Computer Security Applications Conference. :55–67.
Just-in-time return-oriented programming (JIT-ROP) is a powerful memory corruption attack that bypasses various forms of code randomization. Execute-only memory (XOM) can potentially prevent these attacks, but requires source code. In contrast, destructive code reads (DCR) provide a trade-off between security and legacy compatibility. The common belief is that DCR provides strong protection if combined with a high-entropy code randomization. The contribution of this paper is twofold: first, we demonstrate that DCR can be bypassed regardless of the underlying code randomization scheme. To this end, we show novel, generic attacks that infer the code layout for highly randomized program code. Second, we present the design and implementation of BGDX (Byte-Granular DCR and XOM), a novel mitigation technique that protects legacy binaries against code inference attacks. BGDX enforces memory permissions on a byte-granular level allowing us to combine DCR and XOM for legacy, off-the-shelf binaries. Our evaluation shows that BGDX is not only effective, but highly efficient, imposing only a geometric mean performance overhead of 3.95 % on SPEC.
2018-12-03
Molka-Danielsen, J., Engelseth, P., Olešnaníková, V., Šarafín, P., Žalman, R..  2017.  Big Data Analytics for Air Quality Monitoring at a Logistics Shipping Base via Autonomous Wireless Sensor Network Technologies. 2017 5th International Conference on Enterprise Systems (ES). :38–45.
The indoor air quality in industrial workplace buildings, e.g. air temperature, humidity and levels of carbon dioxide (CO2), play a critical role in the perceived levels of workers' comfort and in reported medical health. CO2 can act as an oxygen displacer, and in confined spaces humans can have, for example, reactions of dizziness, increased heart rate and blood pressure, headaches, and in more serious cases loss of consciousness. Specialized organizations can be brought in to monitor the work environment for limited periods. However, new low cost wireless sensor network (WSN) technologies offer potential for more continuous and autonomous assessment of industrial workplace air quality. Central to effective decision making is the data analytics approach and visualization of what is potentially, big data (BD) in monitoring the air quality in industrial workplaces. This paper presents a case study that monitors air quality that is collected with WSN technologies. We discuss the potential BD problems. The case trials are from two workshops that are part of a large on-shore logistics base a regional shipping industry in Norway. This small case study demonstrates a monitoring and visualization approach for facilitating BD in decision making for health and safety in the shipping industry. We also identify other potential applications of WSN technologies and visualization of BD in the workplace environments; for example, for monitoring of other substances for worker safety in high risk industries and for quality of goods in supply chain management.
2018-11-28
Vasconcelos, Marisa, Candello, Heloisa, Pinhanez, Claudio, dos Santos, Thiago.  2017.  Bottester: Testing Conversational Systems with Simulated Users. Proceedings of the XVI Brazilian Symposium on Human Factors in Computing Systems. :73:1–73:4.

Recently, conversation agents have attracted the attention of many companies such as IBM, Facebook, Google, and Amazon which have focused on developing tools or API (Application Programming Interfaces) for developers to create their own chat-bots. In this paper, we focus on new approaches to evaluate such systems presenting some recommendations resulted from evaluating a real chatbot use case. Testing conversational agents or chatbots is not a trivial task due to the multitude aspects/tasks (e.g., natural language understanding, dialog management and, response generation) which must be considered separately and as a mixture. Also, the creation of a general testing tool is a challenge since evaluation is very sensitive to the application context. Finally, exhaustive testing can be a tedious task for the project team what creates a need for a tool to perform it automatically. This paper opens a discussion about how conversational systems testing tools are essential to ensure well-functioning of such systems as well as to help interface designers guiding them to develop consistent conversational interfaces.

Schliep, Michael, Kariniemi, Ian, Hopper, Nicholas.  2017.  Is Bob Sending Mixed Signals? Proceedings of the 2017 on Workshop on Privacy in the Electronic Society. :31–40.

Demand for end-to-end secure messaging has been growing rapidly and companies have responded by releasing applications that implement end-to-end secure messaging protocols. Signal and protocols based on Signal dominate the secure messaging applications. In this work we analyze conversational security properties provided by the Signal Android application against a variety of real world adversaries. We identify vulnerabilities that allow the Signal server to learn the contents of attachments, undetectably re-order and drop messages, and add and drop participants from group conversations. We then perform proof-of-concept attacks against the application to demonstrate the practicality of these vulnerabilities, and suggest mitigations that can detect our attacks. The main conclusion of our work is that we need to consider more than confidentiality and integrity of messages when designing future protocols. We also stress that protocols must protect against compromised servers and at a minimum implement a trust but verify model.

2018-11-19
Song, Baolin, Jiang, Hao, Zhao, Li, Huang, Chengwei.  2017.  A Bimodal Biometric Verification System Based on Deep Learning. Proceedings of the International Conference on Video and Image Processing. :89–93.

In order to improve the limitation of single-mode biometric identification technology, a bimodal biometric verification system based on deep learning is proposed in this paper. A modified CNN architecture is used to generate better facial feature for bimodal fusion. The obtained facial feature and acoustic feature extracted by the acoustic feature extraction model are fused together to form the fusion feature on feature layer level. The fusion feature obtained by this method are used to train a neural network of identifying the target person who have these corresponding features. Experimental results demonstrate the superiority and high performance of our bimodal biometric in comparison with single-mode biometrics for identity authentication, which are tested on a bimodal database consists of data coherent from TED-LIUM and CASIA-WebFace. Compared with using facial feature or acoustic feature alone, the classification accuracy of fusion feature obtained by our method is increased obviously.

2018-11-14
Magyar, G..  2017.  Blockchain: Solving the Privacy and Research Availability Tradeoff for EHR Data: A New Disruptive Technology in Health Data Management. 2017 IEEE 30th Neumann Colloquium (NC). :000135–000140.

A blockchain powered Health information ecosystem can solve a frequently discussed problem of the lifelong recorded patient health data, which seriously could hurdle the privacy of the patients and the growing data hunger of the research and policy maker institutions. On one side the general availability of the data is vital in emergency situations and supports heavily the different research, population health management and development activities, on the other side using the same data can lead to serious social and ethical problems caused by malicious actors. Currently, the regulation of the privacy data varies all over the world, however underlying principles are always defensive and protective towards patient privacy against general availability. The protective principles cause a defensive, data hiding attitude of the health system developers to avoid breaching the overall law regulations. It makes the policy makers and different - primarily drug - developers to find ways to treat data such a way that lead to ethical and political debates. In our paper we introduce how the blockchain technology can help solving the problem of secure data storing and ensuring data availability at the same time. We use the basic principles of the American HIPAA regulation, which defines the public availability criteria of health data, however the different local regulations may differ significantly. Blockchain's decentralized, intermediary-free, cryptographically secured attributes offer a new way of storing patient data securely and at the same time publicly available in a regulated way, where a well-designed distributed peer-to-peer network incentivize the smooth operation of a full-featured EHR system.

2018-10-26
Toliupa, S., Babenko, T., Trush, A..  2017.  The building of a security strategy based on the model of game management. 2017 4th International Scientific-Practical Conference Problems of Infocommunications. Science and Technology (PIC S T). :57–60.

Cyber security management of systems in the cyberspace has been a challenging problem for both practitioners and the research community. Their proprietary nature along with the complexity renders traditional approaches rather insufficient and creating the need for the adoption of a holistic point of view. This paper draws upon the principles theory game in order to present a novel systemic approach towards cyber security management, taking into account the complex inter-dependencies and providing cost-efficient defense solutions.

2018-09-28
Alshboul, Yazan, Streff, Kevin.  2017.  Beyond Cybersecurity Awareness: Antecedents and Satisfaction. Proceedings of the 2017 International Conference on Software and e-Business. :85–91.
Organizations develop technical and procedural measures to protect information systems. Relying only on technical based security solutions is not enough. Organizations must consider technical security solutions along with social, human, and organizational factors. The human element represents the employees (insiders) who use the information systems and other technology resources in their day-to-day operations. ISP awareness is essential to protect organizational information systems. This study adapts the Innovation Diffusion Theory to examine the antecedents of ISP awareness and its impact on the satisfaction with ISP and security practices. A sample of 236 employees in universities in the United States is collected to evaluate the research model. Results indicated that ISP quality, self-efficacy, and technology security awareness significantly impact ISP awareness. The current study presents significant contributions toward understanding the antecedents of ISP awareness and provides a starting point toward including satisfaction aspect in information security behavioral domain.
2018-09-12
Boureanu, Ioana, Gérault, David, Lafourcade, Pascal, Onete, Cristina.  2017.  Breaking and Fixing the HB+DB Protocol. Proceedings of the 10th ACM Conference on Security and Privacy in Wireless and Mobile Networks. :241–246.

HB+ is a lightweight authentication scheme, which is secure against passive attacks if the Learning Parity with Noise Problem (LPN) is hard. However, HB+ is vulnerable to a key-recovery, man-in-the-middle (MiM) attack dubbed GRS. The HB+DB protocol added a distance-bounding dimension to HB+, and was experimentally proven to resist the GRS attack. We exhibit several security flaws in HB+DB. First, we refine the GRS strategy to induce a different key-recovery MiM attack, not deterred by HB+DB's distancebounding. Second, we prove HB+DB impractical as a secure distance-bounding (DB) protocol, as its DB security-levels scale poorly compared to other DB protocols. Third, we refute that HB+DB's security against passive attackers relies on the hardness of LPN; moreover, (erroneously) requiring such hardness lowers HB+DB's efficiency and security. We also propose anew distance-bounding protocol called BLOG. It retains parts of HB+DB, yet BLOG is provably secure and enjoys better (asymptotical) security.

Canard, Sébastien, Diop, Aïda, Kheir, Nizar, Paindavoine, Marie, Sabt, Mohamed.  2017.  BlindIDS: Market-Compliant and Privacy-Friendly Intrusion Detection System over Encrypted Traffic. Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security. :561–574.

The goal of network intrusion detection is to inspect network traffic in order to identify threats and known attack patterns. One of its key features is Deep Packet Inspection (DPI), that extracts the content of network packets and compares it against a set of detection signatures. While DPI is commonly used to protect networks and information systems, it requires direct access to the traffic content, which makes it blinded against encrypted network protocols such as HTTPS. So far, a difficult choice was to be made between the privacy of network users and security through the inspection of their traffic content to detect attacks or malicious activities. This paper presents a novel approach that bridges the gap between network security and privacy. It makes possible to perform DPI directly on encrypted traffic, without knowing neither the traffic content, nor the patterns of detection signatures. The relevance of our work is that it preserves the delicate balance in the security market ecosystem. Indeed, security editors will be able to protect their distinctive detection signatures and supply service providers only with encrypted attack patterns. In addition, service providers will be able to integrate the encrypted signatures in their architectures and perform DPI without compromising the privacy of network communications. Finally, users will be able to preserve their privacy through traffic encryption, while also benefiting from network security services. The extensive experiments conducted in this paper prove that, compared to existing encryption schemes, our solution reduces by 3 orders of magnitude the connection setup time for new users, and by 6 orders of magnitude the consumed memory space on the DPI appliance.

2018-08-23
Dong, Changyu, Wang, Yilei, Aldweesh, Amjad, McCorry, Patrick, van Moorsel, Aad.  2017.  Betrayal, Distrust, and Rationality: Smart Counter-Collusion Contracts for Verifiable Cloud Computing. Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security. :211–227.
Cloud computing has become an irreversible trend. Together comes the pressing need for verifiability, to assure the client the correctness of computation outsourced to the cloud. Existing verifiable computation techniques all have a high overhead, thus if being deployed in the clouds, would render cloud computing more expensive than the on-premises counterpart. To achieve verifiability at a reasonable cost, we leverage game theory and propose a smart contract based solution. In a nutshell, a client lets two clouds compute the same task, and uses smart contracts to stimulate tension, betrayal and distrust between the clouds, so that rational clouds will not collude and cheat. In the absence of collusion, verification of correctness can be done easily by crosschecking the results from the two clouds. We provide a formal analysis of the games induced by the contracts, and prove that the contracts will be effective under certain reasonable assumptions. By resorting to game theory and smart contracts, we are able to avoid heavy cryptographic protocols. The client only needs to pay two clouds to compute in the clear, and a small transaction fee to use the smart contracts. We also conducted a feasibility study that involves implementing the contracts in Solidity and running them on the official Ethereum network.
Yue, L., Junqin, H., Shengzhi, Q., Ruijin, W..  2017.  Big Data Model of Security Sharing Based on Blockchain. 2017 3rd International Conference on Big Data Computing and Communications (BIGCOM). :117–121.

The rise of big data age in the Internet has led to the explosive growth of data size. However, trust issue has become the biggest problem of big data, leading to the difficulty in data safe circulation and industry development. The blockchain technology provides a new solution to this problem by combining non-tampering, traceable features with smart contracts that automatically execute default instructions. In this paper, we present a credible big data sharing model based on blockchain technology and smart contract to ensure the safe circulation of data resources.

Svetinovic, Davor.  2017.  Blockchain Engineering for the Internet of Things: Systems Security Perspective. Proceedings of the 3rd ACM International Workshop on IoT Privacy, Trust, and Security. :1–1.
The Internet of Things (IoT) technology has a potential to bring the benefits of intelligently interconnecting not just computers and humans, but most of everyday things. IoT has a promise of opening significant business process improvement opportunities leading to economic growth and cost reductions. However, there are many challenges facing IoT, including significant scalability and security challenges due to the integration of potentially huge number of things into the network. Many of scalability and security issues stem from a centralized, primarily client/server, architecture of IoT systems and frameworks. Blockchain technology, as a relativelly new approach to decentralized computation and assets management and transfer, has a potential to help solve a number of scalability and security issues that IoT is facing, primarilly through the removal of centralized points of failure for such systems. As such, blockchain technology and IoT integration provides a promising direction and it has recently generated significant research interest, e.g., [4]. In this talk, we present our experiences based on our recent project in enhancing security and privacy in decentralized energy trading in smart grids using blockchain, multi-signatures and anonymous messaging streams [1], that has built upon our previous work on Bitcoin-based decentralized carbon emissions trading infrastructure model [2]. In particular, we present the blockchain systems security issues within the context of IoT security and privacy requirements [3]. This is done with the intention of producing an early integrated security model for blockchain-powered IoT systems [5]. The presentation is constrained to the discussion of the architecture-level requirements [6]. Finally, we will present the main opportunity loss if the integration ignores the full realization of the real-world asset transaction paradigm.
Kolias, Constantinos, Copi, Lucas, Zhang, Fengwei, Stavrou, Angelos.  2017.  Breaking BLE Beacons For Fun But Mostly Profit. Proceedings of the 10th European Workshop on Systems Security. :4:1–4:6.
Bluetooth Low Energy (BLE) Beacons introduced a novel technology that enables devices to advertise their presence in an area by constantly broadcasting a static unique identifier. The aim was to enhance services with location and context awareness. Although the hardware components of typical BLE Beacons systems are able to support adequate cryptography, the design and implementation of most publicly available BLE Beacon protocols appears to render them vulnerable to a plethora of attacks. Indeed, in this paper, we were able to perform user tracking, user behavior monitoring, spoofing as well as denial of service (DoS) of many supported services. Our aim is to show that these attacks stem from design flaws of the underlying protocols and assumptions made for the BLE beacons protocols. Using a clearly defined threat model, we provide a formal analysis of the adversarial capabilities and requirements and the attack impact on security and privacy for the end-user. Contrary to popular belief, BLE technology can be exploited even by low-skilled adversaries leading to exposure of user information. To demonstrate our attacks in practice, we selected Apple's iBeacon technology, as a case study. However, our analysis can be easily generalized to other BLE Beacon technologies.
Wong, K., Hunter, A..  2017.  Bluetooth for decoy systems: A practical study. 2017 IEEE Conference on Communications and Network Security (CNS). :86–387.

We present an approach to tracking the behaviour of an attacker on a decoy system, where the decoy communicates with the real system only through low energy bluetooth. The result is a low-cost solution that does not interrupt the live system, while limiting potential damage. The attacker has no way to detect that they are being monitored, while their actions are being logged for further investigation. The system has been physically implemented using Raspberry PI and Arduino boards to replicate practical performance.

2018-07-09
Christopher Theisen, Hyunwoo Sohn, Dawson Tripp, Laurie Williams.  2018.  BP: Profiling Vulnerabilities on the Attack Surface. IEEE SecDev.

Security practitioners use the attack surface of software systems to prioritize areas of systems to test and analyze. To date, approaches for predicting which code artifacts are vulnerable have utilized a binary classification of code as vulnerable or not vulnerable. To better understand the strengths and weaknesses of vulnerability prediction approaches, vulnerability datasets with classification and severity data are needed. The goal of this paper is to help researchers and practitioners make security effort prioritization decisions by evaluating which classifications and severities of vulnerabilities are on an attack surface approximated using crash dump stack traces. In this work, we use crash dump stack traces to approximate the attack surface of Mozilla Firefox. We then generate a dataset of 271 vulnerable files in Firefox, classified using the Common Weakness Enumeration (CWE) system. We use these files as an oracle for the evaluation of the attack surface generated using crash data. In the Firefox vulnerability dataset, 14 different classifications of vulnerabilities appeared at least once. In our study, 85.3%
of vulnerable files were on the attack surface generated using crash data. We found no difference between the severity of vulnerabilities found on the attack surface generated using crash data and vulnerabilities not occurring on the attack surface. Additionally, we discuss lessons learned during the development of this vulnerability dataset.

2018-06-20
Luo, J. S., Lo, D. C. T..  2017.  Binary malware image classification using machine learning with local binary pattern. 2017 IEEE International Conference on Big Data (Big Data). :4664–4667.

Malware classification is a critical part in the cyber-security. Traditional methodologies for the malware classification typically use static analysis and dynamic analysis to identify malware. In this paper, a malware classification methodology based on its binary image and extracting local binary pattern (LBP) features is proposed. First, malware images are reorganized into 3 by 3 grids which is mainly used to extract LBP feature. Second, the LBP is implemented on the malware images to extract features in that it is useful in pattern or texture classification. Finally, Tensorflow, a library for machine learning, is applied to classify malware images with the LBP feature. Performance comparison results among different classifiers with different image descriptors such as GIST, a spatial envelop, and the LBP demonstrate that our proposed approach outperforms others.

2018-06-11
Kaaniche, N., Laurent, M..  2017.  A blockchain-based data usage auditing architecture with enhanced privacy and availability. 2017 IEEE 16th International Symposium on Network Computing and Applications (NCA). :1–5.

Recent years have witnessed the trend of increasingly relying on distributed infrastructures. This increased the number of reported incidents of security breaches compromising users' privacy, where third parties massively collect, process and manage users' personal data. Towards these security and privacy challenges, we combine hierarchical identity based cryptographic mechanisms with emerging blockchain infrastructures and propose a blockchain-based data usage auditing architecture ensuring availability and accountability in a privacy-preserving fashion. Our approach relies on the use of auditable contracts deployed in blockchain infrastructures. Thus, it offers transparent and controlled data access, sharing and processing, so that unauthorized users or untrusted servers cannot process data without client's authorization. Moreover, based on cryptographic mechanisms, our solution preserves privacy of data owners and ensures secrecy for shared data with multiple service providers. It also provides auditing authorities with tamper-proof evidences for data usage compliance.

Moskewicz, Matthew W., Jannesari, Ali, Keutzer, Kurt.  2017.  Boda: A Holistic Approach for Implementing Neural Network Computations. Proceedings of the Computing Frontiers Conference. :53–62.
Neural networks (NNs) are currently a very popular topic in machine learning for both research and practice. GPUs are the dominant computing platform for research efforts and are also gaining popularity as a deployment platform for applications such as autonomous vehicles. As a result, GPU vendors such as NVIDIA have spent enormous effort to write special-purpose NN libraries. On other hardware targets, especially mobile GPUs, such vendor libraries are not generally available. Thus, the development of portable, open, high-performance, energy-efficient GPU code for NN operations would enable broader deployment of NN-based algorithms. A root problem is that high efficiency GPU programming suffers from high complexity, low productivity, and low portability. To address this, this work presents a framework to enable productive, high-efficiency GPU programming for NN computations across hardware platforms and programming models. In particular, the framework provides specific support for metaprogramming and autotuning of operations over ND-Arrays. To show the correctness and value of our framework and approach, we implement a selection of NN operations, covering the core operations needed for deploying three common image-processing neural networks. We target three different hardware platforms: NVIDIA, AMD, and Qualcomm GPUs. On NVIDIA GPUs, we show both portability between OpenCL and CUDA as well competitive performance compared to the vendor library. On Qualcomm GPUs, we show that our framework enables productive development of target-specific optimizations, and achieves reasonable absolute performance. Finally, On AMD GPUs, we show initial results that indicate our framework can yield reasonable performance on a new platform with minimal effort.
2018-06-07
Wu, Xi, Li, Fengan, Kumar, Arun, Chaudhuri, Kamalika, Jha, Somesh, Naughton, Jeffrey.  2017.  Bolt-on Differential Privacy for Scalable Stochastic Gradient Descent-based Analytics. Proceedings of the 2017 ACM International Conference on Management of Data. :1307–1322.

While significant progress has been made separately on analytics systems for scalable stochastic gradient descent (SGD) and private SGD, none of the major scalable analytics frameworks have incorporated differentially private SGD. There are two inter-related issues for this disconnect between research and practice: (1) low model accuracy due to added noise to guarantee privacy, and (2) high development and runtime overhead of the private algorithms. This paper takes a first step to remedy this disconnect and proposes a private SGD algorithm to address both issues in an integrated manner. In contrast to the white-box approach adopted by previous work, we revisit and use the classical technique of output perturbation to devise a novel “bolt-on” approach to private SGD. While our approach trivially addresses (2), it makes (1) even more challenging. We address this challenge by providing a novel analysis of the L2-sensitivity of SGD, which allows, under the same privacy guarantees, better convergence of SGD when only a constant number of passes can be made over the data. We integrate our algorithm, as well as other state-of-the-art differentially private SGD, into Bismarck, a popular scalable SGD-based analytics system on top of an RDBMS. Extensive experiments show that our algorithm can be easily integrated, incurs virtually no overhead, scales well, and most importantly, yields substantially better (up to 4X) test accuracy than the state-of-the-art algorithms on many real datasets.

Fan, Xiaokang, Sui, Yulei, Liao, Xiangke, Xue, Jingling.  2017.  Boosting the Precision of Virtual Call Integrity Protection with Partial Pointer Analysis for C++. Proceedings of the 26th ACM SIGSOFT International Symposium on Software Testing and Analysis. :329–340.

We present, VIP, an approach to boosting the precision of Virtual call Integrity Protection for large-scale real-world C++ programs (e.g., Chrome) by using pointer analysis for the first time. VIP introduces two new techniques: (1) a sound and scalable partial pointer analysis for discovering statically the sets of legitimate targets at virtual callsites from separately compiled C++ modules and (2) a lightweight instrumentation technique for performing (virtual call) integrity checks at runtime. VIP raises the bar against vtable hijacking attacks by providing stronger security guarantees than the CHA-based approach with comparable performance overhead. VIP is implemented in LLVM-3.8.0 and evaluated using SPEC programs and Chrome. Statically, VIP protects virtual calls more effectively than CHA by significantly reducing the sets of legitimate targets permitted at 20.3% of the virtual callsites per program, on average. Dynamically, VIP incurs an average (maximum) instrumentation overhead of 0.7% (3.3%), making it practically deployable as part of a compiler tool chain.