Biblio
Networked embedded systems (which include IoT, CPS, etc.) are vulnerable. Even though we know how to secure these systems, their heterogeneity and the heterogeneity of security policies remains a major problem. Designers face ever more sophisticated attacks while they are not always security experts and have to get a trade-off on design criteria. We propose in this paper the CLASA architecture (Cross-Layer Agent Security Architecture), a generic, integrated, inter-operable, decentralized and modular architecture which relies on cross-layering.
Firewall is the first defense line for network security. Packet filtering is a basic function in firewall, which filter network packets according to a series of rules called firewall policy. The design of firewall policy is invariably under the instruction of security policy, which is a generic guideline that lists the needs for network access permissions. The design of firewall policy should observe the regulations of security policy. However, even for IPv4 firewall policy, it is extremely difficult to keep the consistency between security policy and firewall policy. Some consistency decision methods of security policy and IPv4 firewall policy were proposed. However, the address space of IPv6 address is a very large, the existing consistency decision methods can not be directly used to deal with IPv6 firewall policy. To resolve the above problem, in this paper, we use a formal technique to decide the consistency between IPv6 firewall policy and security policy effectively and rapidly. We also developed a prototype model and evaluated the effectiveness of the proposed method.
Over the last few years, the deployment of Internet of Things (IoT) is attaining much more concern on smart computing devices. With the exponential growth of small devices and at the same time cheap prices of these sensing devices, there raises an important question for the security of the stored information as these devices generate a large amount of private data for observing and controlling purposes. Distributed Denial of Service (DDoS) attacks are current examples of major security threats to IoT devices. As yet, no standard protocol can fully ensure the security of IoT devices. But adaptive decision making along with elasticity and incessant monitoring is required. These difficulties can be resolved with the assistance of Software Defined Networking (SDN) which can viably deal with the security dangers to the IoT devices in a powerful and versatile way without hampering the lightweightness of the IoT devices. Although SDN performs quite well for managing and controlling IoT devices, security is still an open concern. Nonetheless, there are a few challenges relating to the mitigation of DDoS attacks in IoT systems implemented with SDN architecture. In this paper, a brief overview of some of the popular DDoS attack mitigation techniques and their limitations are described. Also, the challenges of implementing these techniques in SDN-based architecture to IoT devices have been presented.
Security, efficiency and availability are three key factors that affect the application of searchable encryption schemes in mobile cloud computing environments. In order to meet the above characteristics, this paper proposes a certificateless public key encryption with a keyword search (CLPEKS) scheme. In this scheme, a CLPEKS generation method and a Trapdoor generation method are designed to support multiple receivers to query. Based on the elliptic curve scalar multiplication, the efficiencies of encrypting keywords, generating Trapdoors, and testing are improved. By adding a random number factor to the Trapdoor generation, the scheme can resist the internal keyword guessing attacks. Under the random oracle model, it is proved that the scheme can resist keyword guessing attacks. Theoretical analyses and implementation show that the proposed scheme is more efficient than the existing schemes.