Visible to the public Biblio

Found 1408 results

Filters: First Letter Of Title is C  [Clear All Filters]
2021-06-01
Abhinav, P Y, Bhat, Avakash, Joseph, Christina Terese, Chandrasekaran, K.  2020.  Concurrency Analysis of Go and Java. 2020 5th International Conference on Computing, Communication and Security (ICCCS). :1—6.
There has been tremendous progress in the past few decades towards developing applications that receive data and send data concurrently. In such a day and age, there is a requirement for a language that can perform optimally in such environments. Currently, the two most popular languages in that respect are Go and Java. In this paper, we look to analyze the concurrency features of Go and Java through a complete programming language performance analysis, looking at their compile time, run time, binary sizes and the language's unique concurrency features. This is done by experimenting with the two languages using the matrix multiplication and PageRank algorithms. To the extent of our knowledge, this is the first work which used PageRank algorithm to analyse concurrency. Considering the results of this paper, application developers and researchers can hypothesize on an appropriate language to use for their concurrent programming activity.Results of this paper show that Go performs better for fewer number of computation but is soon taken over by Java as the number of computations drastically increase. This trend is shown to be the opposite when thread creation and management is considered where Java performs better with fewer computation but Go does better later on. Regarding concurrency features both Java with its Executor Service library and Go had their own advantages that made them better for specific applications.
Ming, Kun.  2020.  Chinese Coreference Resolution via Bidirectional LSTMs using Word and Token Level Representations. 2020 16th International Conference on Computational Intelligence and Security (CIS). :73–76.
Coreference resolution is an important task in the field of natural language processing. Most existing methods usually utilize word-level representations, ignoring massive information from the texts. To address this issue, we investigate how to improve Chinese coreference resolution by using span-level semantic representations. Specifically, we propose a model which acquires word and character representations through pre-trained Skip-Gram embeddings and pre-trained BERT, then explicitly leverages span-level information by performing bidirectional LSTMs among above representations. Experiments on CoNLL-2012 shared task have demonstrated that the proposed model achieves 62.95% F1-score, outperforming our baseline methods.
Chen, Zhenfang, Wang, Peng, Ma, Lin, Wong, Kwan-Yee K., Wu, Qi.  2020.  Cops-Ref: A New Dataset and Task on Compositional Referring Expression Comprehension. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). :10083–10092.
Referring expression comprehension (REF) aims at identifying a particular object in a scene by a natural language expression. It requires joint reasoning over the textual and visual domains to solve the problem. Some popular referring expression datasets, however, fail to provide an ideal test bed for evaluating the reasoning ability of the models, mainly because 1) their expressions typically describe only some simple distinctive properties of the object and 2) their images contain limited distracting information. To bridge the gap, we propose a new dataset for visual reasoning in context of referring expression comprehension with two main features. First, we design a novel expression engine rendering various reasoning logics that can be flexibly combined with rich visual properties to generate expressions with varying compositionality. Second, to better exploit the full reasoning chain embodied in an expression, we propose a new test setting by adding additional distracting images containing objects sharing similar properties with the referent, thus minimising the success rate of reasoning-free cross-domain alignment. We evaluate several state-of-the-art REF models, but find none of them can achieve promising performance. A proposed modular hard mining strategy performs the best but still leaves substantial room for improvement.
2021-05-25
Segovia, Mariana, Rubio-Hernan, Jose, Cavalli, Ana R., Garcia-Alfaro, Joaquin.  2020.  Cyber-Resilience Evaluation of Cyber-Physical Systems. 2020 IEEE 19th International Symposium on Network Computing and Applications (NCA). :1—8.
Cyber-Physical Systems (CPS) use computational resources to control physical processes and provide critical services. For this reason, an attack in these systems may have dangerous consequences in the physical world. Hence, cyber- resilience is a fundamental property to ensure the safety of the people, the environment and the controlled physical processes. In this paper, we present metrics to quantify the cyber-resilience level based on the design, structure, stability, and performance under the attack of a given CPS. The metrics provide reference points to evaluate whether the system is better prepared or not to face the adversaries. This way, it is possible to quantify the ability to recover from an adversary using its mathematical model based on actuators saturation. Finally, we validate our approach using a numeric simulation on the Tennessee Eastman control challenge problem.
Hopkins, Stephen, Kalaimannan, Ezhil, John, Caroline Sangeetha.  2020.  Cyber Resilience using State Estimation Updates Based on Cyber Attack Matrix Classification. 2020 IEEE Kansas Power and Energy Conference (KPEC). :1—6.
Cyber-physical systems (CPS) maintain operation, reliability, and safety performance using state estimation and control methods. Internet connectivity and Internet of Things (IoT) devices are integrated with CPS, such as in smart grids. This integration of Operational Technology (OT) and Information Technology (IT) brings with it challenges for state estimation and exposure to cyber-threats. This research establishes a state estimation baseline, details the integration of IT, evaluates the vulnerabilities, and develops an approach for detecting and responding to cyber-attack data injections. Where other approaches focus on integration of IT cyber-controls, this research focuses on development of classification tools using data currently available in state estimation methods to quantitatively determine the presence of cyber-attack data. The tools may increase computational requirements but provide methods which can be integrated with existing state estimation methods and provide for future research in state estimation based cyber-attack incident response. A robust cyber-resilient CPS includes the ability to detect and classify a cyber-attack, determine the true system state, and respond to the cyber-attack. The purpose of this paper is to establish a means for a cyber aware state estimator given the existence of sub-erroneous outlier detection, cyber-attack data weighting, cyber-attack data classification, and state estimation cyber detection.
Bosio, Alberto, Canal, Ramon, Di Carlo, Stefano, Gizopoulos, Dimitris, Savino, Alessandro.  2020.  Cross-Layer Soft-Error Resilience Analysis of Computing Systems. 2020 50th Annual IEEE-IFIP International Conference on Dependable Systems and Networks-Supplemental Volume (DSN-S). :79—79.
In a world with computation at the epicenter of every activity, computing systems must be highly resilient to errors even if miniaturization makes the underlying hardware unreliable. Techniques able to guarantee high reliability are associated to high costs. Early resilience analysis has the potential to support informed design decisions to maximize system-level reliability while minimizing the associated costs. This tutorial focuses on early cross-layer (hardware and software) resilience analysis considering the full computing continuum (from IoT/CPS to HPC applications) with emphasis on soft errors.
Dodson, Michael, Beresford, Alastair R., Richardson, Alexander, Clarke, Jessica, Watson, Robert N. M..  2020.  CHERI Macaroons: Efficient, host-based access control for cyber-physical systems. 2020 IEEE European Symposium on Security and Privacy Workshops (EuroS PW). :688–693.
Cyber-Physical Systems (CPS) often rely on network boundary defence as a primary means of access control; therefore, the compromise of one device threatens the security of all devices within the boundary. Resource and real-time constraints, tight hardware/software coupling, and decades-long service lifetimes complicate efforts for more robust, host-based access control mechanisms. Distributed capability systems provide opportunities for restoring access control to resource-owning devices; however, such a protection model requires a capability-based architecture for CPS devices as well as task compartmentalisation to be effective.This paper demonstrates hardware enforcement of network bearer tokens using an efficient translation between CHERI (Capability Hardware Enhanced RISC Instructions) architectural capabilities and Macaroon network tokens. While this method appears to generalise to any network-based access control problem, we specifically consider CPS, as our method is well-suited for controlling resources in the physical domain. We demonstrate the method in a distributed robotics application and in a hierarchical industrial control application, and discuss our plans to evaluate and extend the method.
Sabillon, Regner, Serra-Ruiz, Jordi, Cavaller, Victor, Cano, Jeimy.  2017.  A Comprehensive Cybersecurity Audit Model to Improve Cybersecurity Assurance: The CyberSecurity Audit Model (CSAM). 2017 International Conference on Information Systems and Computer Science (INCISCOS). :253—259.

Nowadays, private corporations and public institutions are dealing with constant and sophisticated cyberthreats and cyberattacks. As a general warning, organizations must build and develop a cybersecurity culture and awareness in order to defend against cybercriminals. Information Technology (IT) and Information Security (InfoSec) audits that were efficient in the past, are trying to converge into cybersecurity audits to address cyber threats, cyber risks and cyberattacks that evolve in an aggressive cyber landscape. However, the increase in number and complexity of cyberattacks and the convoluted cyberthreat landscape is challenging the running cybersecurity audit models and putting in evidence the critical need for a new cybersecurity audit model. This article reviews the best practices and methodologies of global leaders in the cybersecurity assurance and audit arena. By means of the analysis of the current approaches and theoretical background, their real scope, strengths and weaknesses are highlighted looking forward a most efficient and cohesive synthesis. As a resut, this article presents an original and comprehensive cybersecurity audit model as a proposal to be utilized for conducting cybersecurity audits in organizations and Nation States. The CyberSecurity Audit Model (CSAM) evaluates and validates audit, preventive, forensic and detective controls for all organizational functional areas. CSAM has been tested, implemented and validated along with the Cybersecurity Awareness TRAining Model (CATRAM) in a Canadian higher education institution. A research case study is being conducted to validate both models and the findings will be published accordingly.

Wei, Wenqi, Liu, Ling, Loper, Margaret, Chow, Ka-Ho, Gursoy, Emre, Truex, Stacey, Wu, Yanzhao.  2020.  Cross-Layer Strategic Ensemble Defense Against Adversarial Examples. 2020 International Conference on Computing, Networking and Communications (ICNC). :456—460.

Deep neural network (DNN) has demonstrated its success in multiple domains. However, DNN models are inherently vulnerable to adversarial examples, which are generated by adding adversarial perturbations to benign inputs to fool the DNN model to misclassify. In this paper, we present a cross-layer strategic ensemble framework and a suite of robust defense algorithms, which are attack-independent, and capable of auto-repairing and auto-verifying the target model being attacked. Our strategic ensemble approach makes three original contributions. First, we employ input-transformation diversity to design the input-layer strategic transformation ensemble algorithms. Second, we utilize model-disagreement diversity to develop the output-layer strategic model ensemble algorithms. Finally, we create an input-output cross-layer strategic ensemble defense that strengthens the defensibility by combining diverse input transformation based model ensembles with diverse output verification model ensembles. Evaluated over 10 attacks on ImageNet dataset, we show that our strategic ensemble defense algorithms can achieve high defense success rates and are more robust with high attack prevention success rates and low benign false negative rates, compared to existing representative defenses.

Meghdouri, Fares, Vázquez, Félix Iglesias, Zseby, Tanja.  2020.  Cross-Layer Profiling of Encrypted Network Data for Anomaly Detection. 2020 IEEE 7th International Conference on Data Science and Advanced Analytics (DSAA). :469—478.

In January 2017 encrypted Internet traffic surpassed non-encrypted traffic. Although encryption increases security, it also masks intrusions and attacks by blocking the access to packet contents and traffic features, therefore making data analysis unfeasible. In spite of the strong effect of encryption, its impact has been scarcely investigated in the field. In this paper we study how encryption affects flow feature spaces and machine learning-based attack detection. We propose a new cross-layer feature vector that simultaneously represents traffic at three different levels: application, conversation, and endpoint behavior. We analyze its behavior under TLS and IPSec encryption and evaluate the efficacy with recent network traffic datasets and by using Random Forests classifiers. The cross-layer multi-key approach shows excellent attack detection in spite of TLS encryption. When IPsec is applied, the reduced variant obtains satisfactory detection for botnets, yet considerable performance drops for other types of attacks. The high complexity of network traffic is unfeasible for monolithic data analysis solutions, therefore requiring cross-layer analysis for which the multi-key vector becomes a powerful profiling core.

2021-05-13
Tong, Zhongkai, Zhu, Ziyuan, Wang, Zhanpeng, Wang, Limin, Zhang, Yusha, Liu, Yuxin.  2020.  Cache side-channel attacks detection based on machine learning. 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :919—926.
Security has always been one of the main concerns in the field of computer architecture and cloud computing. Cache-based side-channel attacks pose a threat to almost all existing architectures and cloud computing. Especially in the public cloud, the cache is shared among multiple tenants, and cache attacks can make good use of this to extract information. Cache side-channel attacks are a problem to be solved for security, in which how to accurately detect cache side-channel attacks has been a research hotspot. Because the cache side-channel attack does not require the attacker to physically contact the target device and does not need additional devices to obtain the side channel information, the cache-side channel attack is efficient and hidden, which poses a great threat to the security of cryptographic algorithms. Based on the AES algorithm, this paper uses hardware performance counters to obtain the features of different cache events under Flush + Reload, Prime + Probe, and Flush + Flush attacks. Firstly, the random forest algorithm is used to filter the cache features, and then the support vector machine algorithm is used to model the system. Finally, high detection accuracy is achieved under different system loads. The detection accuracy of the system is 99.92% when there is no load, the detection accuracy is 99.85% under the average load, and the detection accuracy under full load is 96.57%.
Kumar, Sachin, Gupta, Garima, Prasad, Ranjitha, Chatterjee, Arnab, Vig, Lovekesh, Shroff, Gautam.  2020.  CAMTA: Causal Attention Model for Multi-touch Attribution. 2020 International Conference on Data Mining Workshops (ICDMW). :79–86.
Advertising channels have evolved from conventional print media, billboards and radio-advertising to online digital advertising (ad), where the users are exposed to a sequence of ad campaigns via social networks, display ads, search etc. While advertisers revisit the design of ad campaigns to concurrently serve the requirements emerging out of new ad channels, it is also critical for advertisers to estimate the contribution from touch-points (view, clicks, converts) on different channels, based on the sequence of customer actions. This process of contribution measurement is often referred to as multi-touch attribution (MTA). In this work, we propose CAMTA, a novel deep recurrent neural network architecture which is a causal attribution mechanism for user-personalised MTA in the context of observational data. CAMTA minimizes the selection bias in channel assignment across time-steps and touchpoints. Furthermore, it utilizes the users' pre-conversion actions in a principled way in order to predict per-channel attribution. To quantitatively benchmark the proposed MTA model, we employ the real-world Criteo dataset and demonstrate the superior performance of CAMTA with respect to prediction accuracy as compared to several baselines. In addition, we provide results for budget allocation and user-behaviour modeling on the predicted channel attribution.
2021-05-05
Jana, Angshuman, Maity, Dipendu.  2020.  Code-based Analysis Approach to Detect and Prevent SQL Injection Attacks. 2020 11th International Conference on Computing, Communication and Networking Technologies (ICCCNT). :1—6.

Now-a-days web applications are everywhere. Usually these applications are developed by database program which are often written in popular host programming languages such as C, C++, C\#, Java, etc., with embedded Structured Query Language (SQL). These applications are used to access and process crucial data with the help of Database Management System (DBMS). Preserving the sensitive data from any kind of attacks is one of the prime factors that needs to be maintained by the web applications. The SQL injection attacks is one of the important security threat for the web applications. In this paper, we propose a code-based analysis approach to automatically detect and prevent the possible SQL Injection Attacks (SQLIA) in a query before submitting it to the underlying database. This approach analyses the user input by assigning a complex number to each input element. It has two part (i) input clustering and (ii) safe (non-malicious) input identification. We provide a details discussion of the proposal w.r.t the literature on security and execution overhead point of view.

Tabiban, Azadeh, Jarraya, Yosr, Zhang, Mengyuan, Pourzandi, Makan, Wang, Lingyu, Debbabi, Mourad.  2020.  Catching Falling Dominoes: Cloud Management-Level Provenance Analysis with Application to OpenStack. 2020 IEEE Conference on Communications and Network Security (CNS). :1—9.

The dynamicity and complexity of clouds highlight the importance of automated root cause analysis solutions for explaining what might have caused a security incident. Most existing works focus on either locating malfunctioning clouds components, e.g., switches, or tracing changes at lower abstraction levels, e.g., system calls. On the other hand, a management-level solution can provide a big picture about the root cause in a more scalable manner. In this paper, we propose DOMINOCATCHER, a novel provenance-based solution for explaining the root cause of security incidents in terms of management operations in clouds. Specifically, we first define our provenance model to capture the interdependencies between cloud management operations, virtual resources and inputs. Based on this model, we design a framework to intercept cloud management operations and to extract and prune provenance metadata. We implement DOMINOCATCHER on OpenStack platform as an attached middleware and validate its effectiveness using security incidents based on real-world attacks. We also evaluate the performance through experiments on our testbed, and the results demonstrate that DOMINOCATCHER incurs insignificant overhead and is scalable for clouds.

2021-05-03
Lehniger, Kai, Aftowicz, Marcin J., Langendorfer, Peter, Dyka, Zoya.  2020.  Challenges of Return-Oriented-Programming on the Xtensa Hardware Architecture. 2020 23rd Euromicro Conference on Digital System Design (DSD). :154–158.
This paper shows how the Xtensa architecture can be attacked with Return-Oriented-Programming (ROP). The presented techniques include possibilities for both supported Application Binary Interfaces (ABIs). Especially for the windowed ABI a powerful mechanism is presented that not only allows to jump to gadgets but also to manipulate registers without relying on specific gadgets. This paper purely focuses on how the properties of the architecture itself can be exploited to chain gadgets and not on specific attacks or a gadget catalog.
2021-04-29
Fejrskov, M., Pedersen, J. M., Vasilomanolakis, E..  2020.  Cyber-security research by ISPs: A NetFlow and DNS Anonymization Policy. :1—8.

Internet Service Providers (ISPs) have an economic and operational interest in detecting malicious network activity relating to their subscribers. However, it is unclear what kind of traffic data an ISP has available for cyber-security research, and under which legal conditions it can be used. This paper gives an overview of the challenges posed by legislation and of the data sources available to a European ISP. DNS and NetFlow logs are identified as relevant data sources and the state of the art in anonymization and fingerprinting techniques is discussed. Based on legislation, data availability and privacy considerations, a practically applicable anonymization policy is presented.

2021-04-27
Masmali, O., Badreddin, O..  2020.  Comprehensive Model-Driven Complexity Metrics for Software Systems. 2020 IEEE 20th International Conference on Software Quality, Reliability and Security Companion (QRS-C). :674—675.

Measuring software complexity is key in managing the software lifecycle and in controlling its maintenance. While there are well-established and comprehensive metrics to measure the complexity of the software code, assessment of the complexity of software designs remains elusive. Moreover, there are no clear guidelines to help software designers chose alternatives that reduce design complexity, improve design comprehensibility, and improve the maintainability of the software. This paper outlines a language independent approach to measuring software design complexity using objective and deterministic metrics. The paper outlines the metrics for two major software design notations; UML Class Diagrams and UML State Machines. The approach is based on the analysis of the design elements and their mutual interactions. The approach can be extended to cover other UML design notations.

Sidhu, H. J. Singh, Khanna, M. S..  2020.  Cloud's Transformative Involvement in Managing BIG-DATA ANALYTICS For Securing Data in Transit, Storage And Use: A Study. 2020 Sixth International Conference on Parallel, Distributed and Grid Computing (PDGC). :297—302.

with the advent of Cloud Computing a new era of computing has come into existence. No doubt, there are numerous advantages associated with the Cloud Computing but, there is other side of the picture too. The challenges associated with it need a more promising reply as far as the security of data that is stored, in process and in transit is concerned. This paper put forth a cloud computing model that tries to answer the data security queries; we are talking about, in terms of the four cryptographic techniques namely Homomorphic Encryption (HE), Verifiable Computation (VC), Secure Multi-Party Computation (SMPC), Functional Encryption (FE). This paper takes into account the various cryptographic techniques to undertake cloud computing security issues. It also surveys these important (existing) cryptographic tools/techniques through a proposed Cloud computation model that can be used for Big Data applications. Further, these cryptographic tools are also taken into account in terms of CIA triad. Then, these tools/techniques are analyzed by comparing them on the basis of certain parameters of concern.

Syafalni, I., Fadhli, H., Utami, W., Dharma, G. S. A., Mulyawan, R., Sutisna, N., Adiono, T..  2020.  Cloud Security Implementation using Homomorphic Encryption. 2020 IEEE International Conference on Communication, Networks and Satellite (Comnetsat). :341—345.

With the advancement of computing and communication technologies, data transmission in the internet are getting bigger and faster. However, it is necessary to secure the data to prevent fraud and criminal over the internet. Furthermore, most of the data related to statistics requires to be analyzed securely such as weather data, health data, financial and other services. This paper presents an implementation of cloud security using homomorphic encryption for data analytic in the cloud. We apply the homomorphic encryption that allows the data to be processed without being decrypted. Experimental results show that, for the polynomial degree 26, 28, and 210, the total executions are 2.2 ms, 4.4 ms, 25 ms per data, respectively. The implementation is useful for big data security such as for environment, financial and hospital data analytics.

Javid, T., Faris, M., Beenish, H., Fahad, M..  2020.  Cybersecurity and Data Privacy in the Cloudlet for Preliminary Healthcare Big Data Analytics. 2020 International Conference on Computing and Information Technology (ICCIT-1441). :1—4.

In cyber physical systems, cybersecurity and data privacy are among most critical considerations when dealing with communications, processing, and storage of data. Geospatial data and medical data are examples of big data that require seamless integration with computational algorithms as outlined in Industry 4.0 towards adoption of fourth industrial revolution. Healthcare Industry 4.0 is an application of the design principles of Industry 4.0 to the medical domain. Mobile applications are now widely used to accomplish important business functions in almost all industries. These mobile devices, however, are resource poor and proved insufficient for many important medical applications. Resource rich cloud services are used to augment poor mobile device resources for data and compute intensive applications in the mobile cloud computing paradigm. However, the performance of cloud services is undesirable for data-intensive, latency-sensitive mobile applications due increased hop count between the mobile device and the cloud server. Cloudlets are virtual machines hosted in server placed nearby the mobile device and offer an attractive alternative to the mobile cloud computing in the form of mobile edge computing. This paper outlines cybersecurity and data privacy aspects for communications of measured patient data from wearable wireless biosensors to nearby cloudlet host server in order to facilitate the cloudlet based preliminary and essential complex analytics for the medical big data.

Ritter, D..  2020.  Cost-efficient Integration Process Placement in Multiclouds. 2020 IEEE 24th International Enterprise Distributed Object Computing Conference (EDOC). :115–124.
Integration as a service (INTaaS) is the centrepiece of current corporate, cloud and device integration processes. Thereby, compositions of integration patterns denote the required integration logic as integration processes, currently running in single-clouds. While multicloud settings gain importance, their promised freedom of selecting the best option for a specific problem is currently not realized as well as security constraints are handled in a cost-intensive manner for the INTaaS vendors, leading to security vs. costs goal conflicts.In this work, we propose a design-time placement for processes in multiclouds that is cost-optimal for the INTaaS vendors, and respects configurable security constraints of their customers. To make the solution tractable for larger, productive INTaaS processes, it is relaxed using local search heuristics. The approach is evaluated on real-world integration processes with respect to cost- and runtime-efficiency, and discusses interesting trade-offs.
Wang, Y., Guo, S., Wu, J., Wang, H. H..  2020.  Construction of Audit Internal Control System Based on Online Big Data Mining and Decentralized Model. 2020 Fourth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC). :623–626.
Construction of the audit internal control system based on the online big data mining and decentralized model is done in this paper. How to integrate the novel technologies to internal control is the attracting task. IT audit is built on the information system and is independent of the information system itself. Application of the IT audit in enterprises can provide a guarantee for the security of the information system that can give an objective evaluation of the investment. This paper integrates the online big data mining and decentralized model to construct an efficient system. Association discovery is also called a data link. It uses similarity functions, such as the Euclidean distance, edit distance, cosine distance, Jeckard function, etc., to establish association relationships between data entities. These parameters are considered for comprehensive analysis.
Banakar, V., Upadhya, P., Keshavan, M..  2020.  CIED - rapid composability of rack scale resources using Capability Inference Engine across Datacenters. 2020 IEEE Infrastructure Conference. :1–4.
There are multiple steps involved in transitioning a server from the factory to being fully provisioned for an intended workload. These steps include finding the optimal slot for the hardware and to compose the required resources on the hardware for the intended workload. There are many different factors that influence the placement of server hardware in the datacenter, such as physical limitations to connect to a network be it Ethernet or storage networks, power requirements, temperature/cooling considerations, and physical space, etc. In addition to this, there may be custom requirements driven by workload policies (such as security, data privacy, power redundancy, etc.). Once the server has been placed in the right slot it needs to be configured with the appropriate resources for the intended workload. CIED will provide a ranked list of locations for server placement based on the intended workload, connectivity and physical requirements of the server. Once the server is placed in the suggested slot, the solution automatically discovers the server and composes the required resources (compute, storage and networks) for running the appropriate workload. CIED reduces the overall time taken to move hardware from factory to production and also maximizes the server hardware utilization while minimizing downtime by physically placing the resources optimally. From the case study that was undertaken, the time taken to transition a server from factory to being fully provisioned was proportional to the number of devices in the datacenter. With CIED this time is constant irrespective of the complexity or the number of devices in a datacenter.
Matthews, I., Mace, J., Soudjani, S., Moorsel, A. van.  2020.  Cyclic Bayesian Attack Graphs: A Systematic Computational Approach. 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :129–136.
Attack graphs are commonly used to analyse the security of medium-sized to large networks. Based on a scan of the network and likelihood information of vulnerabilities, attack graphs can be transformed into Bayesian Attack Graphs (BAGs). These BAGs are used to evaluate how security controls affect a network and how changes in topology affect security. A challenge with these automatically generated BAGs is that cycles arise naturally, which make it impossible to use Bayesian network theory to calculate state probabilities. In this paper we provide a systematic approach to analyse and perform computations over cyclic Bayesian attack graphs. We present an interpretation of Bayesian attack graphs based on combinational logic circuits, which facilitates an intuitively attractive systematic treatment of cycles. We prove properties of the associated logic circuit and present an algorithm that computes state probabilities without altering the attack graphs (e.g., remove an arc to remove a cycle). Moreover, our algorithm deals seamlessly with any cycle without the need to identify their type. A set of experiments demonstrates the scalability of the algorithm on computer networks with hundreds of machines, each with multiple vulnerabilities.
2021-04-09
Mir, N., Khan, M. A. U..  2020.  Copyright Protection for Online Text Information : Using Watermarking and Cryptography. 2020 3rd International Conference on Computer Applications Information Security (ICCAIS). :1—4.
Information and security are interdependent elements. Information security has evolved to be a matter of global interest and to achieve this; it requires tools, policies and assurance of technologies against any relevant security risks. Internet influx while providing a flexible means of sharing the online information economically has rapidly attracted countless writers. Text being an important constituent of online information sharing, creates a huge demand of intellectual copyright protection of text and web itself. Various visible watermarking techniques have been studied for text documents but few for web-based text. In this paper, web page watermarking and cryptography for online content copyrights protection is proposed utilizing the semantic and syntactic rules using HTML (Hypertext Markup Language) and is tested for English and Arabic languages.